
 Rezaee A. & Pajohesh M., J. Harmoniz. Res. Appl. Sci. 2016, 4(2), 90-92

www.johronline.com 90 | P a g e

For Correspondence:
arrezaee@ut.ac.ir
Received on: June 2016
Accepted after revision: June 2016
Downloaded from: www.johronline.com

Introduction: Resolve a software engineering
framework, language, and discipline in the
design, specification, construction and use of
focused parts. [6] The importance of field,
composition, understanding, and performance.
Our principles to resolve / C ++ [2] [7] [3] [1]
[4] application development environment and
reap big rewards.
Background: This reusable software
management group (RSRG) in computer and
information sciences at Ohio State University
(OSU-CIS) is done on a Unix-based
environment. Tools used include makeup,
different language compilers, and GNU Emac.
For our purposes, CS1 and CS2 environment of

students taking and using RESOLVE / C ++ is
essentially the same.
In 1998, OSU- CIS Great Migration from UNIX
to another one began. In doing so, our many
years of baggage left behind, including some
ancient applications, window managers, and the
like. At the same time, it was decided to migrate
to GNU EmacsXEmacs be done. Which was
available in the old GNU Emacs, XEmacs is
available in the new.
RESOLVE / C ++ and settlement / ADA
development and maintenance of the old
environment with a locally customized version
of Ada, C ++, and state lock that is part of GNU
Emacs was supported font. A simple test showed
that the old Emacs Lisp RESOLVE / C ++ under
XEmacs does not work, we have to consider this
code and functionality are presented.
Elements: Since RESOLVE / Ada is also
actively looking to do, we were able to limit our
scope to deal with the determination / C ++
respectively. Old code to support this

 Journal Of Harmonized Research in Applied Sciences
 4(2), 2016, 90-92

CREATING AN ENVIRONMENT FOR REUSABLE SOFTWARE RESEARCH

Alireza Rezaee1 and Mazyar Pajohesh2

1Assistant Professor of Department of System and Mechatronics Engineering, Faculty of New Sciences and
Technologies, University of Tehran, Tehran, Iran

2Master of student of Adiban University, Garmsar, Semnan, Iran

Original Research Article

Journal Of Harmonized Research (JOHR)

ISSN 2321 – 7456

Abstract: When a change to the architecture used to develop environmental assessment RESOLVE / C
++, it became clear to rewrite the environment from the beginning. At the start of the principles of
software reuse it again, leading to a significant reduction in code, increases in maintenance and bug
fixes were possible.
Keywords: Reusability, RESOLVE, C++, Lisp, XEmacs, GNU Emacs.

 Rezaee A. & Pajohesh M., J. Harmoniz. Res. Appl. Sci. 2016, 4(2), 90-92

www.johronline.com 91 | P a g e

environment S-2468 Emacs Lisp expression
spread across five files had been formed. These
files include `` lift 'version of the C ++ - mode
and font lock between 1996 and 1998. Elements
of the package of settlement / C ++ was
incorporated into different files stored locally
were. The number of problems is provided.
Stagnation: Since the code a lift version of
another package, it is practical to incorporate
bug fixes, performance improvements, feature
enhancements, etc., that occurred during the
year. The code was written in 1996 remained
almost exactly as it was.
Maintainability: Maintenance of the code
suffers a great deal. It was very difficult, even
for LISP programmer skills, read the source
code and easily understands it. Made numerous
dependencies need to open multiple files at once
to trace functionality mode from beginning to
end. Since 1996 only updates the built
environment in the form of language keywords
were added or deleted.
Fragility: Changes to the Code strange tendency
to affect the rest of the system was unpredictable
way. Sometimes, parts of the code simply stop
working, for unknown reasons. In practice,
proved to be working normally up blocks of
code.
Exclusivity: Because the determination / C ++
environment, a modified version of `` normal 'C
++ environment, it was impossible to use both
RESOLVE / C ++ and `` vanilla' 'C ++. The
determination of the code / C ++ in a significant
path to be able to use the `` natural " 'C ++
environment.
New Version: Requirements for settlement / C
++ environment was clear upon examination of
the state of the system.
• Must be easily understood, especially as

Lisp's expertise scarce. Non experts should
be able to understand the code.

• Effective should do. With the heavy use of
thin clients, and supports remote users, many
instances of the software can be running on a
single processor. Users should not believe
that your environment `` Pokey '' is.

• Should be adjustable. The default settings
for things like color must be connected to
your state.

• Local should not require maintenance. Due
to budget constraints, it is possible to
maintain a system to keep lisp guru. The
nature of open source software is dynamic,
where new features are added and bugs are
fixed [5] as XEmacs and its C ++ - support
for LISP packages to be updated, the
changes need to resolve and will / C ++
environment will be incorporated. The area
where the settlement only acceptable
changes / C ++ language and the
environment need to slowly change your
keyword list will be updated. Those
keywords should be in one, easy to maintain
the list. Given these conditions, a number of
decisions were reached.

• Instead of hardwiring color and font settings
to the environment, we parameter settings,
put them in a file that researchers and
students new options .xemacs RSRG or your
classes can inherit. This enables the user to
customize these settings without having
XEmacs through the tuning process twice
(once, at the start of the case, and again
when evaluating user preferences set) the
process.

• A higher version of available modes is
unacceptable.

• Major mode to support RESOLVE / C ++ is
derived `` state '' of CC- case, a package
which is used to support the C, C ++,
Objective C, Java, CORBA IDL, and code
Pike.

The implementation of a new major mode to
support RESOLVE / C ++ is. The result is a
single source file 125 S-. Our needs have been
met, and we have seen the determination of the
new XEmacs / C ++ environment through a
major upgrade (XEmacs 20.4 to 21.1p2) live. A
new platform (XEmacs 21.1p2 in Win32), was
tested and working mode as expected. It is now
possible to choose whether to use RESOLVE / C
++ (rcpp mode) or standard C ++ (C ++ - mode).

 Rezaee A. & Pajohesh M., J. Harmoniz. Res. Appl. Sci. 2016, 4(2), 90-92

www.johronline.com 92 | P a g e

Conclusions: Rcpp successfully reusable
software model that does not work outside the
lab.
With the construction of a component through
clearly defined interfaces and mechanisms were
using their environment, We are able to offer the
same functionality with about 5% of the code
needed to support similar functionality using a
fork and `` custom '' respectively. The gains in
speed, storage, and portability are.
References
[1] P. Bucci, T.J. Long, and B.W.
Weide. Teaching software architecture
principles in CS1/CS2. In Proceedings 3rd
International Software Architecture Workshop,
pages 9-12. ACM, November 1998.
[2]T.J. Long and B.W. WeideWeaving software
engineering into the fabric of CS1 and
CS2. In Proceedings 4th International Workshop
on Software Engineering Education, pages 66-
69, May 1997.
[3]T.J. Long, B.W. Weide, P. Bucci, D.S.
Gibson, J.E. Hollingsworth, M. Sitaraman, and
S.H. Edwards. Providing intellectual focus to

CS1/CS2. In Proceedings 29th SIGCSE
Technical Symposium on Computer Science
Education, pages 252-256. ACM, February
1998.
[4] T.J. Long, B.W. Weide, P. Bucci, and M.
Sitaraman. Client view first: An exodus from
implementation-biased teaching. In Proceedings
30th SIGCSE Technical Symposium on
Computer Science Education, pages 136-140.
ACM, March 1999.
[5] Eric S. Raymond. The Cathedral and the
Bazaar, July 1999.
[online]http://www.tuxedo.org/~esr/writings/cat
hedral-bazaar/cathedral-bazaar.htm l.
[6]M.curtin, Creating an Environment for
reusable software research: A case study in
Reusability,OSU-CISRC-89/99-TR21,1999.
[7]M. Sitaraman, B.W. Weide, T.J. Long, and
W.D. Heym. Teaching the essential role of
mathematical modeling in understanding and
reasoning about objects. Technical Report OSU-
CISRC-9/97-TR43, Department of Computer
and Information Science, The Ohio State
University, September 1997.

