
Garg S. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 95-99

 www.johronline.com 95 | P a g e

For Correspondence:
yadav21shikhaATgmail.com
Received on: October 2013
Accepted after revision: November 2013
Downloaded from: www.johronline.com

1. Introduction
A distributed operating system (DOS) is
software over a collection of independent,
networked, communicating, and physically
separate computational nodes. Individual
nodes each hold a specific software subset of

the global aggregate operating system. Each
subset is a composite of two distinct service
provisioners. The first is a ubiquitous minimal
kernel, or microkernel, that directly controls
that node’s hardware. Second is a higher-level
collection of system management components
that coordinate the node's individual and
collaborative activities. These components
abstract microkernel functions and support
user applications.
The microkernel and the management
components collection work together. They
support the system’s goal of integrating

Abstract:
A logical model of a distributed operating system has been presented. This model of a distributed
operating system contains a set of processes managing resources, connections between these
processes, and mappings of events controlling this distributed operating system into processes
managing resources. The fundamental types of resources introduced by the architecture of local
computer networks, i.e., messages and data structures describing the location of resources in the
network, have been defined. Operations on these resources and connections between the processes
managing them and processes managing other resources of the distributed operating system have
been presented. Addressing processes have been discussed. The model has been constructed in such
a way that a synthesis of different simulation tools (models) to study distributed operating systems
can be carried out.

Keywords: Ubiquitous- existing or being everywhere, Collaborative- characterised, Mitigates-to
lessen in force, Proliferation- the growth of cells by multiplication of parts.
Abbreviation:- DOS- distributed operating system, IPC-inter process communication, OS-
operating system

DISTRIBUTED OPERATING SYSTEM

Shweta Garg, Shrishti Vashist, Shruti Aggarwal

 CSE Department, Dronacharya College Of Engineering,
Gurgaon, India

Journal Of Harmonized Research (JOHR)

Review Article

 Journal Of Harmonized Research in Engineering
 1(2), 2013, 95-99

ISSN 2347 – 7393

Garg S. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 95-99

 www.johronline.com 96 | P a g e

multiple resources and processing
functionality into an efficient and stable
system .This seamless integration of
individual nodes into a global system is
referred to as transparency, or single system
image; describing the illusion provided to
users of the global system’s appearance as a
single computational entity.

2. Description:-
Structure of monolithic kernel, microkernel
and hybrid kernel-based operating systems
A distributed OS provides the essential
services and functionality required of an OS,
adding attributes and particular configurations
to allow it to support additional requirements
such as increased scale and availability. To a
user, a distributed OS works in a manner
similar to a single-node, monolithic operating
system. That is, although it consists of
multiple nodes, it appears to users and
applications as a single-node.
Separating minimal system-level functionality
from additional user-level modular services
provides a “separation of mechanism and
policy.” Mechanism and policy can be simply
interpreted as "how something is done" versus
"why something is done," respectively. This
separation increases flexibility and scalability.

3. Overview:-
3.1. The kernel
At each locale (typically a node), the kernel
provides a minimally complete set of node-
level utilities necessary for operating a node’s
underlying hardware and resources. These
mechanisms include allocation, management,
and disposition of a node’s resources,
processes, communication, and input/output
management support functions.Within the
kernel, the communications sub-system is of
foremost importance for a distributed OS.
In a distributed OS, the kernel often supports a
minimal set of functions, including low-level
address space management, thread
management, and inter-process
communication (IPC). A kernel of this design
is referred to as a microkernel Its modular
nature enhances reliability and security,
essential features for a distributed OS. It is
common for a kernel to be identically
replicated over all nodes in a system and
therefore that the nodes in a system use
similar hardware. The combination of minimal
design and ubiquitous node coverage enhances
the global system's extensibility, and the
ability to dynamically introduce new nodes or
services.
3.2. System management components
System management components are software
processes that define the node's policies.
These components are the part of the OS
outside the kernel. These components provide
higher-level communication, process and
resource management, reliability, performance
and security. The components match the
functions of a single-entity system, adding the
transparency required in a distributed
environment.
The distributed nature of the OS requires
additional services to support a node's
responsibilities to the global system. In
addition, the system management components
accept the "defensive" responsibilities of
reliability, availability, and persistence. These
responsibilities can conflict with each other. A
consistent approach, balanced perspective, and
a deep understanding of the overall system can
assist in identifying diminishing returns.

Garg S. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 95-99

 www.johronline.com 97 | P a g e

Separation of policy and mechanism mitigates
such conflicts.

System management components overview

3.3. Working together as an operating

system
The architecture and design of a distributed
operating system must realize both individual
node and global system goals. Architecture
and design must be approached in a manner
consistent with separating policy and
mechanism. In doing so, a distributed
operating system attempts to provide an
efficient and reliable distributed computing
framework allowing for an absolute minimal
user awareness of the underlying command
and control efforts.
The multi-level collaboration between a kernel
and the system management components and
in turn between the distinct nodes in a
distributed operating system is the functional
challenge of the distributed operating system.
This is the point in the system that must
maintain a perfect harmony of purpose, and
simultaneously maintain a complete
disconnect of intent from implementation.
This challenge is the distributed operating
system's opportunity to produce the
foundation and framework for a reliable,
efficient, available, robust, extensible, and

scalable system. However, this opportunity
comes at a very high cost in complexity.
3.4. The price of complexity
In a distributed operating system, the
exceptional degree of inherent complexity
could easily render the entire system an
anathema to any user. As such, the logical
price of realizing a distributed operation
system must be calculated in terms of
overcoming vast amounts of complexity in
many areas, and on many levels. This
calculation includes the depth, breadth, and
range of design investment and architectural
planning required in achieving even the most
modest implementation.
These design and development considerations
are critical and unforgiving. For instance, a
deep understanding of a distributed operating
system’s overall architectural and design
detail is required at an exceptionally early
point. An exhausting array of design
considerations is inherent in the development
of a distributed operating system. Each of
these design considerations can potentially
affect many of the others to a significant
degree. This leads to a massive effort in
balanced approach, in terms of the individual
design considerations, and many of their
permutations. As an aid in this effort, most
rely on documented experience and research
in distributed computing.
4. History:-
Research and experimentation efforts began in
earnest in the 1970s and continued through
1990s, with focused interest peaking in the
late 1980s. A number of distributed operating
systems were introduced during this period;
however, very few of these implementations
achieved even modest commercial success.
Fundamental and pioneering implementations
of primitive distributed operating system
component concepts date to the early 1950s.
Some of these individual steps were not
focused directly on distributed computing, and
at the time, many may not have realized their
important impact. These pioneering efforts
laid important groundwork, and inspired
continued research in areas related to
distributed computing.

Garg S. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 95-99

 www.johronline.com 98 | P a g e

In the mid-1970s, research produced
important advances in distributed computing.
These breakthroughs provided a solid, stable
foundation for efforts that continued through
the 1990s.
The accelerating proliferation of multi-
processor and multi-core processor systems
research led to a resurgence of the distributed
OS concept.
5. Distributed computing models:-
5.1. The nature of distribution

A distributed operating system’s hardware
elements spread across multiple locations
within a rack, or around the world.
Distributed configurations allow functions
to be distributed as well as decentralized.
The specific manner of and relative degree
in linkage between the elements, or nodes
in the systems differentiates the two. The
linkages between the two are the lines of
communication between the nodes of the
system.

5.2. Three basic distributions
To better illustrate this point, examine three
system architectures; centralized,
decentralized, and distributed. In this
examination, consider three structural aspects:
organization, connection, and control.
Organization describes a system's physical
arrangement characteristics. Connection

covers the communication pathways among
nodes. Control manages the operation of the
earlier two considerations.
5.2.1. Organization
A centralized system has one level of
structure, where all constituent elements
directly depend upon a single control element.
A decentralized system is hierarchical. The
bottom level unites subsets of a system’s
entities. These entity subsets in turn combine
at higher levels, ultimately culminating at a
central master element. A distributed system is
a collection of autonomous elements with no
concept of levels.
5.2.2. Connection
Centralized systems connect constituents
directly to a central master entity in a hub and
spoke fashion. A decentralized system (aka
network system) incorporates direct and
indirect paths between constituent elements
and the central entity. Typically this is
configured as a hierarchy with only one
shortest path between any two elements.
Finally, the distributed operating system
requires no pattern; direct and indirect
connections are possible between any two
elements. Consider the 1970s phenomena of
“string art” or a spirograph drawing as a fully
connected system, and the spider’s web or the
Interstate Highway System between U.S.
cities as examples of a partially connected
system.
5.2.3. Control
Centralized and decentralized systems have
directed flows of connection to and from the
central entity, while distributed systems
communicate along arbitrary paths. This is the
pivotal notion of the third consideration.
Control involves allocating tasks and data to
system elements balancing efficiency,
responsiveness and complexity.
Centralized and decentralized systems offer
more control, potentially easing administration
by limiting options. Distributed systems are
more difficult to explicitly control, but scale
better horizontally and offer fewer points of
system-wide failure. The associations conform
to the needs imposed by its design but not by
organizational limitations.

Garg S. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 95-99

 www.johronline.com 99 | P a g e

6. Design considerations:-
• Transparency
• Inter-process communication
• Process management
• Resource management
• Reliability
• Availability
• Performance
• Synchronization
• Flexibility

References:-
1. Nutt, Gary J- Centralized and Distributed

Operating Systems.
2. Fortier, Paul J. (1986). Design of

Distributed Operating Systems: Concepts
and Technology. Intertext Publications.

3. Chow, Randy; Theodore Johnson (1997).
Distributed Operating Systems and
Algorithms. Addison Wesley.

4. Hansen, Per Brinch, ed. (2001). Classic
Operating Systems: From Batch
Processing to Distributed Systems

