
Yadav S. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 54-64

 www.johronline.com 54 | P a g e

For Correspondence:
preeti.dhanda01ATgmail.com
Received on: October 2013
Accepted after revision: December 2013
Downloaded from: www.johronline.com

Introduction
Computer Architecture and Programming play
a significant role for High Performance
computing (HPC) in large applications Space
science to Artificial Intelligence. The
Algorithms are problem solving procedures
and later these algorithms transform in to
particular Programming language for HPC.
There is need to study algorithms for High
Performance Computing. These Algorithms
are to be designed to computer in reasonable

time to solve large problems like weather
forecasting, Tsunami, Remote Sensing,
National calamities, Defence, Mineral
exploration, Finite-element, Cloud
Computing, and Expert Systems etc. The
Algorithms are Non-Recursive Algorithms,
Recursive Algorithms, Parallel Algorithms
and Distributed Algorithms.
The Algorithms must be supported the
Computer Architecture. The Computer
Architecture is characterized with Flynn’s
Classification SISD, SIMD, MIMD, and
MISD. Most of the Computer Architectures
are supported with SIMD (Single Instruction
Multiple Data Streams). The class of
Computer Architecture is VLSI Processor,
Multi-processor, Vector Processor and
Multiple Processor.

Abstract:

There is a very high need of High Performance Computing (HPC) in many applications like space
science to Artificial Intelligence. HPC shall be attained through Parallel and Distributed
Computing. In this paper, Parallel and Distributed algorithms are discussed based on Parallel and
Distributed Processors to achieve HPC. The Programming concepts like threads, fork and sockets
are discussed with some simple examples for HPC.

Keywords: High Performance Computing, Parallel and Distributed processing, Computer
Architecture

High Performance Computing through Parallel and Distributed Processing

Shikha Yadav, Preeti Dhanda, Nisha Yadav

Department of Computer Science and Engineering,
Dronacharya College of Engineering, Khentawas,

Farukhnagar, Gurgaon, India

Journal Of Harmonized Research (JOHR)

Original Research Article

 Journal Of Harmonized Research in Engineering
 1(2), 2013, 54-64

ISSN 2347 – 7393

Yadav S. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 54-64

 www.johronline.com 55 | P a g e

High-Performance Computing (HPC) is used
to describe computing environments which
utilize supercomputers and computer clusters
to address complex computational
requirements, support applications with
significant processing time requirements, or
require processing of significant amounts of
data. Supercomputers have generally been
associated with scientific research and
compute-intensive types of problems, but
more and more supercomputer technology is
appropriate for both compute-intensive and
data-intensive applications. A new trend in
supercomputer design for high-performance

computing is using clusters of independent
processors connected in parallel. Many
computing problems are suitable for
parallelization, often problems can be divided
in a manner so that each independent
processing node can work on a portion of the
problem in parallel by simply dividing the
data to be processed, and then combining the
final processing results for each portion. This
type of parallelism is often referred to as data-
parallelism, and data-parallel applications are
a potential solution to petabyte scale data
processing requirements. Data-parallelism can
be defined as a computation applied
independently to each data item of a set of
data which allows the degree of parallelism to
be scaled with the volume of data. The most
important reason for developing data-parallel
applications is the potential for scalable
performance in high-performance computing,
and may result in several orders of magnitude
performance improvement.

The discussion below focuses on the case of
multiple computers, although many of the
issues are the same for concurrent processes
running on a single computer.
Three view points are commonly used:
Parallel algorithms in shared-memory model-
All computers have access to a shared
memory. The algorithm designer chooses the
program executed by each computer.
One theoretical model is the parallel random
access machines (PRAM) that are used.

Though, the classical PRAM model assumes
synchronous access to the shared memory.
A model that is closer to the behaviour of real-
world multiprocessor machines and takes into
account the use of machine instructions, such
as Compare-and-swap (CAS), is that of
asynchronous shared memory.
Parallel algorithms in message-passing model-
The algorithm designer chooses the structure
of the network, as well as the program
executed by each computer.

Yadav S. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 54-64

 www.johronline.com 56 | P a g e

Models such as Boolean circuits and sorting
networks are used. A Boolean circuit can be
seen as a computer network: each gate is a
computer that runs an extremely simple
computer program. Similarly, a sorting
network can be seen as a computer network,
each comparator is a computer.
Distributed algorithms in message-passing
model-
The algorithm designer only chooses the
computer program. All computers run the
same program. The system must work
accurately regardless of the structure of the
network.A commonly used model is a graph
with one finite-state machine per node.
Architecture of high performance
computers:
The Department of High Performance
Computer Architecture is concerned with the
architecture, the application and the continued
development of high performance computers
beneficial to the natural and life sciences. Our
focus is on the selection and analysis of
experimental data generated by accelerator
facilities such as GSI ("Society for Heavy Ion
Research" in Darmstadt, Germany) and CERN
(the European Centre for Nuclear Research in
Geneva, Switzerland). Both of these facilities
employ shared, typically massive parallel
systems and clusters operating under high-
level, real-time and dependability standards.
Our task is the research and development of
new computer architectures and algorithms to
achieve better energy-efficiency. Within the
context of shared computing we implement
both GRID and virtual technologies as well as
cloud computing systems.
High Performance Computing Cluster
(HPCC) System Architecture-
The HPCC system architecture includes two
distinct cluster processing environments, each
of which can be optimized independently for
its parallel data processing purpose. The first
of these platforms is called a Data Refinery
whose overall purpose is the general
processing of massive volumes of raw data of
any type for any purpose but typically used for
data cleansing and hygiene, ETL processing of
the raw data, record linking and entity
resolution, large-scale ad-hoc complex

analytics, and creation of keyed data and
indexes to support high-performance
structured queries and data warehouse
applications. The Data Refinery is also
referred to as Thor, a reference to the mythical
Norse god of thunder with the large hammer
symbolic of crushing large amounts of raw
data into useful information. A Thor cluster is
similar in its function, execution environment,
filesystem, and capabilities to the Google.
The figure given below shows a representation
of a physical Thor processing cluster which
functions as a batch job execution engine for
scalable data-intensive computing
applications. In addition to the Thor master
and slave nodes, additional auxiliary and
common components are needed to implement
a complete HPCC processing environment.

Thor Processing Cluster
The second of the parallel data processing
platforms is called Roxie and functions as a
rapid data delivery engine. This platform is
designed as an online high-performance
structured query and analysis platform or data
warehouse delivering the parallel data access
processing requirements of online applications
through Web services interfaces supporting
thousands of simultaneous queries and users
with sub-second response times. Roxie utilizes
a distributed indexed file system to provide
parallel processing of queries using an
optimized execution environment and
filesystem for high-performance online
processing. Both Thor and Roxie clusters
utilize the ECL programming language for
implementing applications, increasing
continuity and programmer productivity.
the figure given below shows a representation
of a physical Roxie processing cluster which

Yadav S. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 54-64

 www.johronline.com 57 | P a g e

functions as an online query execution engine
for high-performance query and data
warehousing applications. A Roxie cluster
includes multiple nodes with server and
worker processes for processing queries; an
additional auxiliary component called an ESP
server which provides interfaces for external
client access to the cluster; and additional
common components which are shared with a
Thor cluster in an HPCC environment.
Although a Thor processing cluster can be
implemented and used without a Roxie
cluster, an HPCC environment which includes
a Roxie cluster should also include a Thor
cluster. The Thor cluster is used to build the
distributed index files used by the Roxie
cluster and to develop online queries which
will be deployed with the index files to the
Roxie cluster.

Roxie Processing Cluster

Distributed processing:
Distributed computing is a field of computer
science that studies distributed systems. A
distributed system is a software system in
which components located on networked
computers communicate and coordinate their
actions by passing messages. The components
interact with each other in order to achieve a
common goal. There are many substitutes for
the message passing mechanism, including
RPC-like connectors and message queues.
Three significant characteristics of distributed
systems are: concurrency of components, lack
of a global clock, and independent failure of
components. An important aim and challenge
of distributed systems is location
transparency. Examples of distributed systems
vary from SOA-based systems to massively
multiplayer online games to peer-to-peer
applications.

A computer program that runs in a distributed
system is called a distributed program, and
distributed programming is the process of
writing such programs.
Distributed computing also refers to the use of
distributed systems to solve computational
problems. In distributed computing, a problem
is divided into many tasks, each of which is
solved by one or more computers which
communicate with each other by message
passing.
Properties of distributed systems-
So far the focus has been on designing a
distributed system that solves a given
problem. A complementary research problem
is studying the properties of a given
distributed system.
The halting problem is an analogous example
from the field of centralised computation: we
are given a computer program and the task is
to decide whether it halts or runs forever. The
halting problem is notdecidable in the general
case, and naturally understanding the
behaviour of a computer network is at least as
hard as understanding the behaviour of one
computer.
However, there are many interesting special
cases that are decidable. In specific case, it is
possible to provide reason about the behaviour
of a network of finite-state machines. One
example is telling whether a given network of
interacting (asynchronous and non-
deterministic) finite-state machines can reach
a deadlock. This problem is PSPACE-
complete, i.e., it is decidable, but it is not
likely that there is an efficient (centralised,
parallel or distributed) algorithm that solves
the problem in the case of large networks.
Examples:
Examples of distributed systems and
applications of distributed computing contain
the following:
1.-Telecommunication networks:
Telephone networks and cellular networks
Computer networks such as the Internet
Wireless sensor networks
Routing algorithms
2.-Network applications:
Worldwide web and peer-to-peer networks

Yadav S. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 54-64

 www.johronline.com 58 | P a g e

Massively multiplayer online games and
virtual reality communities
Distributed databases and distributed database
management systems
Network file systems
Distributed information processing systems
such as banking systems and airline
reservation systems
3.-Real-time process control:
Aircraft control systems
Industrial control systems
4.-Parallel computation:
Scientific computing, including cluster
computing and grid computing and various
volunteer computing projects; see the list of
distributed computing projects rendering in
computer graphics.
Applications:
Reasons for using distributed systems and
distributed computing may include:

The very nature of an application may require
the use of a communication network that
connects several computers: for example, data
produced in one physical location and
required in another location.
There are many cases in which the use of a
single computer would be possible in
principle, but the use of a distributed system is
beneficial for practical reasons. For example,
it may be more cost-efficient to obtain the
desired level of performance by using a cluster
of several low-end computers, in comparison
with a single high-end computer. A distributed
system can provide more reliability than a
non-distributed system, as there is no single
point of failure. Moreover, a distributed
system may be easier to expand and manage
than a monolithic uniprocessor system.

Parallel processing:

IBM's Blue Gene massively parallel
supercomputer
Parallel computing is a form of computation in
which many calculations are carried out
concurrently, operating on the principle that
large problems can frequently be divided into
smaller ones, which are then solved
simultaneously ("in parallel"). There are
several different forms of parallel computing:
bit-level, instruction level, data, and task
parallelism. Parallelism has been employed
for many years, primarily in high-performance
computing, but interest in it has grown lately
due to the physical constraints preventing

frequency scaling. As power consumption
(and consequently heat generation) by
computers has become a concern in recent
years, parallel computing has become the
dominant paradigm in computer architecture,
mainly in the form of multicore processors.
Parallel computers can be roughly classified
according to the level at which the hardware
supports parallelism, with multi-core and
multi-processor computers having multiple
processing elements within a single machine,
while clusters, MPPs, and grids use multiple
computers to work on the same task.
Specialized parallel computer architectures are

Yadav S. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 54-64

 www.johronline.com 59 | P a g e

sometimes used alongside traditional
processors, for accelerating specific tasks.
Parallel computer programs are more difficult
to write than sequential ones, because
concurrency introduces several new classes of
potential software bugs, of which race
conditions are the most common.
Communication and synchronization between
the different subtasks are typically some of the
greatest complications to getting good parallel
program performance.
Parallel computing is the simultaneous use of
more than one CPU or processor core to
execute a program or multiple computational
threads. Ideally, parallel processing makes
programs run faster because there are more
engines (CPUs or Cores) running it. In
practice, it is often tough to divide a program
in such a way that separate CPUs or cores can
execute different portions without interfering
with each other. Most computers have just one
CPU, but some models have several, and
multi-core processor chips are becoming the
norm. There are even computers with
thousands of CPUs.
With single-CPU, single-core computers, it is
possible to perform parallel processing by
connecting the computers in a network.
However, this type of parallel processing
requires very sophisticated software called
distributed processing software.
Note that parallelism differs from
concurrency. Concurrency is a term used in
the operating systems and databases
communities which refers to the property of a
system in which multiple tasks remain
logically active and make progress at the same
time by interleaving the execution order of the
tasks and thereby creating an illusion of
simultaneously executing instructions.
Parallelism, on the other hand, is a term
typically used by the supercomputing
community to describe executions that
physically execute simultaneously with the
goal of solving a problem in less time or
solving a larger problem in the same time.
Parallelism exploits concurrency.
Parallel processing is also called parallel
computing. In the quest of cheaper computing
alternatives parallel processing provides a

viable option. The idle time of processor
cycles across network can be used effectively
by sophisticated distributed computing
software. The term parallel processing is used
to represent a large class of techniques which
are used to provide simultaneous data
processing tasks for the purpose of increasing
the computational speed of a computer
system.
Types of parallelism-
� Bit-level parallelism-
From the advent of very-large-scale
integration (VLSI) computer-chip fabrication
technology in the 1970s until about 1986,
speed-up in computer architecture was driven
by doubling computer word size—the amount
of information the processor can manipulate
per cycle.Increasing the word size reduces the
number of instructions the processor must
execute to perform an operation on variables
whose sizes are greater than the length of the
word. For example, where an 8-bit processor
must add two 16-bit integers, the processor
must first add the 8 lower-order bits from each
integer using the standard addition instruction,
then add the 8 higher-order bits using an add-
with-carry instruction and the carry bit from
the lower order addition; thus, a 8-bit
processor requires two instructions to
complete a single operation, where a 16-bit
processor would be able to complete the
operation with a single instruction.
Historically, 4-bit microprocessors were
replaced with 8-bit, then 16-bit, then 32-bit
microprocessors. This trend generally came to
an end with the introduction of 32-bit
processors, which has been a standard in
general-purpose computing for two decades.
Not until recently (c. 2003–2004), with the
advent of x86-64 architectures, have 64-bit
processors become commonplace.
� Instruction-level parallelism-

Yadav S. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 54-64

 www.johronline.com 60 | P a g e

A canonical five-stage pipeline in a RISC
machine (IF = Instruction Fetch, ID =
Instruction Decode, EX = Execute, MEM =
Memory access, WB = Register write back)
A computer program is in essence, a stream of
instructions executed by a processor. These
instructions can be re-ordered and combined
into groups which are then executed in parallel
without changing the result of the program.
This is known as instruction-level parallelism.
Advances in instruction-level parallelism
dominated computer architecture from the
mid-1980s until the mid-1990s.
Modern processors have multi-stage
instruction pipelines. Each stage in the
pipeline corresponds to a different action the
processor performs on that instruction in that
stage; a processor with an N-stage pipeline
can have up to N different instructions at
different stages of completion. The canonical
example of a pipelined processor is a RISC
processor, with five stages: instruction fetch,
decode, execute, memory access, and write
back. The Pentium 4 processor had a 35-stage
pipeline.
In addition to instruction-level parallelism
from pipelining, some processors can issue
more than one instruction at a time. These are
known as superscalar processors. Instructions
can be grouped together only if there is no
data dependency between them.
Scoreboarding and the Tomasulo algorithm
(which is similar to scoreboarding but makes
use of register renaming) are two of the most
common techniques for implementing out-of-
order execution and instruction-level
parallelism.
� Task parallelism-

Figure-A five-stage pipelined superscalar
processor, capable of issuing two instructions
percycle. It can have two instructions in each
stage of the pipeline, for a total of up to
10instructions (shown in green) being
simultaneously executed.
Task parallelism is the characteristic of a
parallel program that "entirely different
calculations can be performed on either the
same or different sets of data". This contrasts
with data parallelism, where the same
calculation is performed on the same or
different sets of data. Task parallelism does
not usually scale with the size of a problem.
Classes of parallel computers-
Parallel computers can be roughly classified
according to the level at which the hardware
supports parallelism. This classification is
broadly analogous to the distance between
basic computing nodes. These are not
mutually exclusive; for example, clusters of
symmetric multiprocessors are relatively
common.
� Multicore computing-
A multicore processor is a processor that
includes multiple execution units ("cores") on
the same chip. These processors differ from
superscalar processors, which can issue
multiple instructions per cycle from one
instruction stream (thread); in contrast, a
multicore processor can issue multiple
instructions per cycle from multiple
instruction streams. IBM's Cell
microprocessor, designed for use in the Sony
PlayStation 3, is another prominent multicore
processor.
Each core in a multicore processor can
potentially be superscalar as well—that is, on
every cycle, each core can issue multiple
instructions from one instruction stream.
Simultaneous multithreading (of which Intel's
Hyper Threading is the best known) was an
early form of pseudo-multi coreism. A
processor capable of simultaneous
multithreading has only one execution unit
("core"), but when that execution unit is idling
(such as during a cache miss), it uses that
execution unit to process a second thread.
� Symmetric multiprocessing-

Yadav S. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 54-64

 www.johronline.com 61 | P a g e

A symmetric multiprocessor (SMP) is a
computer system with multiple identical
processors that share memory and connect via
a bus. Bus contention prevents bus
architectures from scaling. As a result, SMPs
generally do not comprise more than 32
processors. "Because of the small size of the
processors and the significant reduction in the
requirements for bus bandwidth achieved by
large caches, such symmetric multiprocessors
are extremely cost-effective, provided that a
sufficient amount of memory bandwidth
exists."
� Distributed computing-
A distributed computer (also known as a
distributed memory multiprocessor) is a
distributed memory computer system in which
the processing elements are connected by a
network. Distributed computers are highly
scalable.
� Cluster computing-
A cluster is a group of loosely coupled
computers that work together closely, so that
in some respects they can be regarded as a
single computer. Clusters are composed of
multiple standalone machines connected by a
network. While machines in a cluster do not
have to be symmetric, load balancing is more
difficult if they are not. The most common
type of cluster is the Beowulf cluster, which is
a cluster implemented on multiple identical
commercial off-the-shelf computers connected
with a TCP/IP Ethernet local area network.
Beowulf technology was originally developed
by Thomas Sterling and Donald Becker. The
vast majority of the TOP500 supercomputers
are clusters.
� Massive parallel processing-
A massively parallel processor (MPP) is a
single computer with many networked
processors. MPPs have many of the same
characteristics as clusters, but MPPs have
specialized interconnect networks (whereas
clusters use commodity hardware for
networking). MPPs also tend to be larger than
clusters, typically having "far more" than 100
processors. In a MPP, "each CPU contains its
own memory and copy of the operating
system and application. Each subsystem

communicates with the others via a high-
speed interconnect."
� Grid computing-
Distributed computing is the most distributed
form of parallel computing. It makes use of
computers communicating over the Internet to
work on a given problem. Because of the low
bandwidth and extremely high latency
available on the internet ,distributed
computing typically deals only with
embarrassingly parallel problems. Many
distributed computing applications have been
created, of which SETI@home and
Folding@home are the best-known examples.
Most grid computing applications use
middleware, software that sits between the
operating system and the application to
manage network resources and standardize the
software interface. The most common
distributed computing middleware is the
Berkeley Open Infrastructure for Network
Computing (BOINC). Often, distributed
computing software makes use of "spare
cycles", performing computations at times
when a computer is idling.
� Specialized parallel computers-
Within parallel computing, there are
specialized parallel devices that remain niche
areas of interest. While not domain-specific,
they tend to be applicable to only a few
classes of parallel problems.
Reconfigurable computing with field-
programmable gate arrays-
Reconfigurable computing is the use of a
field-programmable gate array (FPGA) as a
co-processor to a general-purpose computer.
An FPGA is, in essence, a computer chip that
can rewire itself for a given task.
FPGAs can be programmed with hardware
description languages such as VHDL or
Verilog. However, programming in these
languages can be tedious. Several vendors
have created C to HDL languages that attempt
to emulate the syntax and/or semantics of the
C programming language, with which most
programmers are familiar.
General-purpose computing on graphics
processing units (GPGPU)-
General-purpose computing on graphics
processing units (GPGPU) is a fairly recent

Yadav S. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 54-64

 www.johronline.com 62 | P a g e

trend in computer engineering research.
GPUs are co-processors that have been
heavily optimized for computer graphics
processing.
Computer graphics processing is a field
dominated by data parallel operations—
particularly linear algebra matrix operations.
In the early days, GPGPU programs used the
normal graphics APIs for executing programs.
However, several new programming
languages and platforms have been built to do
general purpose computation on GPUs with
both Nvidia and AMD releasing programming
environments with CUDA and Stream SDK
respectively. Other GPU programming
languages include Brook GPU, PeakStream,
and Rapid Mind. Nvidia has also released
specific products for computation in their
Tesla series. The technology consortium
Khronos Group has released the OpenCL
specification, which is a framework for
writing programs that execute across
platforms consisting of CPUs and GPUs.
AMD, Apple, Intel, Nvidia and others are
supporting OpenCL.
� Application-specific integrated circuits-
Several application-specific integrated circuit
(ASIC) approaches have been devised for
dealing with parallel application because an
ASIC is (by definition) specific to a given
application, it can be fully optimized for that
application. As a result, for a given
application, an ASIC tends to outperform a
general-purpose computer. However, ASICs
are created by X-ray lithography. This process
requires a mask, which can be extremely
expensive. A single mask can cost over a
million US dollars. (The smaller the
transistors required for the chip, the more
expensive the mask will be.) Meanwhile,
performance increases in general-purpose
computing over time (as described by Moore's
Law) tend to wipe out these gains in only one
or two chip generations. High initial cost, and
the tendency to be overtaken by Moore's-law-
driven general-purpose computing, has
rendered ASICs unfeasible for most parallel
computing applications. However, some have
been built.

One example is the peta-flop RIKEN
MDGRAPE-3 machine which uses custom
ASICs for molecular dynamics simulation.
� Vector processors-
A vector processor is a CPU or computer
system that can execute the same instruction
on large sets of data. "Vector processors have
high-level operations that work on linear
arrays of numbers or vectors. An example
vector operation is A = B × C, where A, B,
and C are each 64-element vectors of 64-bit
floating-point numbers." They are closely
related to Flynn's SIMD classification.
Cray computers became famous for their
vector-processing computers in the 1970s and
1980s. However, vector processors—both as
CPUs and as full computer systems—have
generally disappeared. Modern processor
instruction sets do include some vector
processing instructions, such as with
AltiVecand Streaming SIMD Extensions
(SSE).

Advantages-
Faster execution time so, higher throughput.

Disadvantages-
More hardware required, also more power
requirements. Not good for low power and
mobile devices.

Parallel and distributed computing:
Distributed systems are groups of networked
computers, which have the similar goal for
their work. The terms "concurrent
computing", "parallel computing", and
"distributed computing" have a lot of overlap,
and no clear distinction exists between them.
The same system may be characterised both as
"parallel" and "distributed"; the processors in
a typical distributed system run concurrently
in parallel. Parallel computing may be seen as
a particular tightly coupled form of distributed
computing, and distributed computing may be
seen as a loosely coupled form of parallel
computing. Still, it is possible to roughly
classify concurrent systems as "parallel" or
"distributed" using the following criteria:

Yadav S. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 54-64

 www.johronline.com 63 | P a g e

(a),(b)-A Distributed system (c)-A Parallel system

In parallel computing, all processors may have
access to a shared memory to exchange
information between processors. In distributed
computing, each processor has its own private
memory (distributed memory). Information is
exchanged by passing messages between the
processors.
The figure above illustrates the difference
between distributed and parallel systems.
Figure (a) is a schematic view of a typical
distributed system; as usual, the system is
represented as a network topology in which
each node is a computer and each line
connecting the nodes is a communication link.
Figure (b) shows the same distributed system
in more detail: each computer has its own
local memory, and information can be
exchanged only by passing messages from one
node to another by using the available
communication links. Figure (c) shows a
parallel system in which each processor has a
direct access to a shared memory.
The situation is further complicated by the
traditional uses of the terms parallel and
distributed algorithm that do not quite match
the above definitions of parallel and
distributed systems. Nevertheless, as a rule of
thumb, high-performance parallel computation
in a shared-memory multiprocessor uses

parallel algorithms while the coordination of a
large-scale distributed system uses distributed
algorithms.

Conclusion
High Performance Computing is required
when large computations of the problems.
HPC shall be performed through the Parallel
and distributed processing. The Parallel and
Distributed are discussed based on Computer
Architecture. The Class of Algorithms and
Class of Computer Architecture are discussed.
The Programming concepts like threads, fork
and sockets are discussed for HPC. This shall
be extending to large problems likeGrid
Computing and Cloud Computing. Usually
Fortran is used for HPC. The Perl and Java
Programming are also useful for HPC.

References:
1. Bader, David; Robert Pennington (June

1996).”Cluster computing: Applications”.
Georgia Tech College of computing.
Retrieved 2007-07-13.

2. “ Nuclear weapons supercomputer reclaims
world speed record for US” . The
Telegraph. 18 Jun 2012. Retrieved 18 Jun
2012.

Yadav S. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 54-64

 www.johronline.com 64 | P a g e

3. Network-Based Information Systems: First
International Conference, NBIS
2007 ISBN 3-540-74572-6 page 375

4. William W. Hargrove, Forrest M.
Hoffman and Thomas Sterling (August 16,
2001). “Do-It-Yourself Supercomputer”
.Scientific American 265 (2). pp. 72–79.
Retrieved October 18, 2011.

5. William W. Hargrove and Forrest M.
Hoffman (1999). “Cluster Computing:
LinuxTaken to the Extreme”. Linux
magazine. Retrieved October 18, 2011.

6. TOP500 list to view all clusters on the
TOP500 select "cluster" as architecture
from the sub list menu.

7. M. Yokokawa et al The K Computer, in
"International Symposium on Low Power
Electronics and Design" (ISLPED) 1-3
Aug. 2011, pages 371-372

8. Pfister, Gregory (1998). In Search of
Clusters (2nd ed.). Upper Saddle River,
NJ: Prentice Hall PTR. p. 36. ISBN 0-13-
899709-8.

9. Readings in computer architecture by
Mark Donald Hill, Norman Paul Jouppi,
GurindarSohi1999 ISBN 978-1-55860-
539-8 page 41-48

10. High Performance Linux Clusters by
Joseph D. Sloan 2004 ISBN 0-596-00570-
9 page

11. High Performance Computing for
Computational Science - VECPAR
2004 by Michel Daydé, Jack Dongarra
2005ISBN 3-540-25424-2 pages 120-121

12. Hamada T. et al. (2009) A novel multiple-
walk parallel algorithm for the Barnes–Hut
treecode on GPUs – towards cost
effective, high performance N-body
simulation. Comput. Sci. Res.
Development24:21-
31.doi:10.1007/s00450-009-0089-1.

13. Maurer, Ryan: Xen Virtualization and
Linux Clustering.

14. Distributed services with OpenAFS: for
enterprise and education by Franco

Milicchio, Wolfgang Alexander Gehrke
2007, ISBN pages 339-341[1].

15. Grid and Cluster Computing by Parbhu
2008 8120334280 pages 109-112.

16. Gropp, William; Lusk, Ewing; Skjellum,
Anthony (1996). "A High-Performance,
Portable Implementation of the MPI
Message Passing Interface". Parallel
Computing. CiteSeerX: 10.1.1.102.9485.

17. Computer Organization and Design by
David A. Patterson and John L. Hennessy
2011 ISBN 0-12-374750-3 pages 641-642.

18. K. Shirahata, et al Hybrid Map Task
Scheduling for GPU-Based Heterogeneous
Clusters in: Cloud Computing Technology
and Science (CloudCom), 2010 Nov. 30
2010-Dec. 3 2010 pages 733-740 ISBN
978-1-4244-9405[2].

19. Alan Robertson Resource fencing using
STONITH. IBM Linux Research Center,
2010 [3].

20. Sun Cluster environment: Sun Cluster
2.2 by Enrique Vargas, Joseph Bianco,
David Deeths 2001 ISBN page 58

21. Computer Science: The Hardware,
Software and Heart of It by Alfred V.
Aho, Edward K. Blum 2011 ISBN 1-4614-
1167-X pages 156-166 [4].

22. Parallel Programming: For Multicore and
Cluster Systems by Thomas Rauber,
GudulaRünger 2010ISBN3-642-04817-
Xpages 94–95 [5].

23. A debugging standard for high-
performance computing by Joan M.
Francioni and Cherri Pancake, in the
"Journal of Scientific Programming"
Volume 8 Issue 2, April 2000 [6].

24. Computational Science-- ICCS 2003:
International Conference edited by Peter
Sloot 2003 ISBN 3-540-40195-4 pages
291-292.

25. Top500 List-June2006 (1-100)|TOP500
Super Computing Sites.

