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1. Introduction 
Vector processing was once intimately 
associated with the concept of a 
"supercomputer". As with most architectural 
techniques for achieving high performance, it 
exploits regularities in the structure of 

Abstract 
A vector processor, or array processor, is a central processing unit (CPU) that implements an 
instruction set containing instructions that operate on one-dimensional arrays of data called vectors. 
This is in contrast to a scalar processor, whose instructions operate on single data items. Vector 
processors can greatly improve performance on certain workloads, notably numerical simulation 
and similar tasks. Vector machines appeared in the early 1970s and dominated supercomputer 
design through the 1970s into the 90s, notably the various Cray platforms. The rapid rise in the 
price-to-performance ratio of conventional microprocessor designs led to the vector 
supercomputer's demise in the later 1990s. 
Today, most commodity CPUs implement architectures that feature instructions for a form vector 
processing on multiple (vectorized) data sets, typically known as SIMD (Single Instruction, 
Multiple Data). Common examples include VIS, MMX , SSE, AltiVec and AVX . Vector 
processing techniques are also found in video game console hardware and graphics accelerators. In 
2000, IBM, Toshiba and Sony collaborated to create the Cell processor, consisting of one scalar 
processor and eight vector processors, which found use in the Sony PlayStation 3 among other 
applications. 
Other CPU designs may include some multiple instructions for vector processing on multiple 
(vectorised) data sets, typically known as MIMD  (Multiple Instruction, Multiple Data) and realized 
with VLIW . Such designs are usually dedicated to a particular application and not commonly 
marketed for general purpose computing. In the Fujitsu FR-V VLIW/ vector processor both 
technologies are combined. 
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computation, in this case, the fact that many 
codes contain loops that range over linear 
arrays of data performing symmetric 
operations. The origins of vector architecure 
lay in trying to address the problem of 
instruction bandwidth. By the end of the 
1960's, it was possible to build multiple 
pipelined functional units, but the fetch and 
decode of instructions from memory was too 
slow to permit them to be fully exploited. 
Applying a single instruction to multiple data 
elements (SIMD) is one simple and logical way 
to leverage limited instruction bandwidth. 
The most powerful computers of the 1970s and 
1980s tended to be vector machines, from 
Cray, NEC, and Fujitsu, but with increasingly 
higher degrees of semiconductor integration, 
the mismatch between instruction bandwidth 
and operand bandwidth essentially went away. 
As of 2009, only 1 of the worlds top 500 
supercomputers was still based on a vector 
architecture.The lessons of SIMD processing 
weren't entirely lost, however.  While Cray-
style vector units that perform a common 
operations across vector registers of hundreds 
or thousands of data elements have largely 
disappeared, the SIMD approach has been 
applied to the processing of 8 and 16-bit 
multimedia data by 32 and 64-bit processors 
and DSPs with great success.  Under the names 
"MMX" and "SSE", SIMD processing can be 
found in essentially every modern personal 
computer, where it is exploited by image 
processing and audio applications. A Vector 
processor is a processor that can operate on an 
entire vector in one instruction. The operands 
to the instructions are complete vectors instead 
of one element. Vector processors reduce the 
fetch and decode bandwidth as the numbers of 
instructions fetched are less. They also exploit 
data parallelism in large scientific and 
multimedia applications. Based on how the 
operands are fetched, vector processors can be 
divided into two categories - in memory-
memory architecture operands are directly 
streamed to the functional units from the 
memory and results are written back to 
memory as the vector operation proceeds. In 
vector-register architecture, operands are read 
into vector registers from which they are fed to 
the functional units and results of operations 
are written to vector registers. Many 

performance optimization schemes are used in 
vector processors. Memory banks are used to 
reduce load/store latency. Strip mining is used 
to generate code so that vector operation is 
possible for vector operands whose size is less 
than or greater than the size of vector registers. 
Vector chaining the equivalent of forwarding in 
vector processors - is used in case of data 
dependency among vector instructions. Special 
scatter and gather instructions are provided to 
efficiently operate on sparse matrices. 
Instruction set has been designed with the 
property that all vector arithmetic instructions 
only allow element N of one vector register to 
take part in operations with element N from 
other vector registers. This dramatically 
simplifies the construction of a highly parallel 
vector unit, which can be structured as multiple 
parallel lanes. As with a traffic highway, we 
can increase the peak throughput of a vector 
unit by adding more lanes. Adding multiple 
lanes is a popular technique to improve vector 
performance as it requires little increase in 
control complexity and does not require 
changes to existing machine code. 
2. Brief History:- 
Vector processing development began in the 
early 1960s at Westinghouse in their Solomon 
project. Solomon's goal was to dramatically 
increase math performance by using a large 
number of simple math co-processors under the 
control of a single master CPU. The CPU fed a 
single common instruction to all of the 
arithmetic logic units (ALUs), one per "cycle", 
but with a different data point for each one to 
work on. This allowed the Solomon machine to 
apply a single algorithm to a large data set, fed 
in the form of an array. 
In 1962, Westinghouse cancelled the project, 
but the effort was restarted at the University of 
Illinois as the ILLIAC IV. Their version of the 
design originally called for a 1 GFLOPS 
machine with 256 ALUs, but, when it was 
finally delivered in 1972, it had only 64 ALUs 
and could reach only 100 to 150 MFLOPS. 
Nevertheless it showed that the basic concept 
was sound, and, when used on data-intensive 
applications, such as computational fluid 
dynamics, the "failed" ILLIAC was the fastest 
machine in the world. The ILLIAC approach of 
using separate ALUs for each data element is 
not common to later designs, and is often 
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referred to under a separate category, massively 
parallel computing.A computer for operations 
with functions was presented and developed by 
Kartsev in 1967 
3. Structure of Vector processors: 
Commonly called supercomputers, the vector 
processors are machines built primarily to 

handle large scientific and engineering 
calculations. Their performance derives from a 
heavily pipelined architecture which operations 
on vectors and matrices can efficiently exploit.  

Vector Registers 

 
Anatomy of a typical vector processor showing the vector registers and multiple floating point 

ALUs. 
 

The "conventional" scalar processing units are 
not shown. 
Data is read into the vector registers which are 
FIFO queues capable of holding 50-100 
floating point values. A machine will be 
provided with several vector registers, Va, Vb, 
etc. The instruction set will contain instruction 
which:  

• load a vector register from a location in 
memory,  

• perform operations on elements in the 
vector registers and  

• store data back into memory from the 
vector registers.  

Thus a program to calculate the dot-product of 
two vectors might look like this:  
V_load     Va, addA 

V_load     Vb, addB 

V_multiply Vc, Va, Vb 

V_sum      R1,Vc 

1) where the last operation sums the elements 
in vector register C and stores the result in a 
scalar register, R1. 

4. Implematation:- 
4.1. Supercomputers:- 
The first successful implementation of vector 
processing appears to be the Control Data 
Corporation STAR-100 and the Texas 
Instruments Advanced Scientific Computer 
(ASC). The basic ASC (i.e., "one pipe") ALU 
used a pipeline architecture that supported both 
scalar and vector computations, with peak 
performance reaching approximately 20 
MFLOPS, readily achieved when processing 
long vectors. Expanded ALU configurations 
supported "two pipes" or "four pipes" with a 
corresponding 2X or 4X performance gain. 
Memory bandwidth was sufficient to support 
these expanded modes. The STAR was 
otherwise slower than CDC's own 
supercomputers like the CDC 7600, but at data 
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related tasks they could keep up while being 
much smaller and less expensive. However the 
machine also took considerable time decoding 
the vector instructions and getting ready to run 
the process, so it required very specific data 
sets to work on before it actually sped anything 
up. 
The vector technique was first fully exploited 
in 1976 by the famous Cray-1. Instead of 
leaving the data in memory like the STAR and 
ASC, the Cray design had eight "vector 
registers," which held sixty-four 64-bit words 
each. The vector instructions were applied 
between registers, which is much faster than 
talking to main memory. The Cray design used 
pipeline parallelism to implement vector 
instructions rather than multiple ALUs. In 
addition the design had completely separate 
pipelines for different instructions, for 
example, addition/subtraction was implemented 
in different hardware than multiplication. This 
allowed a batch of vector instructions 
themselves to be pipelined, a technique they 
called vector chaining. The Cray-1 normally 
had a performance of about 80 MFLOPS, but 
with up to three chains running it could peak at 
240 MFLOPS – a respectable number even as 
of 2002. 

 
 

Cray J90 processor module with four 
scalar/vector processors 
Other examples followed. Control Data 
Corporation tried to re-enter the high-end 
market again with its ETA-10 machine, but it 
sold poorly and they took that as an opportunity 
to leave the supercomputing field entirely. In 
the early and mid-1980s Japanese companies 
(Fujitsu, Hitachi and Nippon Electric 
Corporation (NEC) introduced register-based 
vector machines similar to the Cray-1, typically 
being slightly faster and much smaller. Oregon-
based Floating Point Systems (FPS) built add-
on array processors for minicomputers, later 

building their own minisupercomputers. 
However Cray continued to be the performance 
leader, continually beating the competition with 
a series of machines that led to the Cray-2, 
Cray X-MP and Cray Y-MP. Since then, the 
supercomputer market has focused much more 
on massively parallel processing rather than 
better implementations of vector processors. 
However, recognising the benefits of vector 
processing IBM developed Virtual Vector 
Architecture for use in supercomputers 
coupling several scalar processors to act as a 
vector processor. 
4.2. SIMD 
Vector processing techniques have since been 
added to almost all modern CPU designs, 
although they are typically referred to as 
SIMD. In these implementations, the vector 
unit runs beside the main scalar CPU, and is 
fed data from vector instruction aware 
programs 
4.3. Description 
In general terms, CPUs are able to manipulate 
one or two pieces of data at a time. For 
instance, most CPUs have an instruction that 
essentially says "add A to B and put the result 
in C". The data for A, B and C could be—in 
theory at least—encoded directly into the 
instruction. However, in efficient 
implementation things are rarely that simple. 
The data is rarely sent in raw form, and is 
instead "pointed to" by passing in an address to 
a memory location that holds the data. 
Decoding this address and getting the data out 
of the memory takes some time, during which 
the CPU traditionally would sit idle waiting for 
the requested data to show up. As CPU speeds 
have increased, this memory latency has 
historically become a large impediment to 
performance; see Memory wall. 
In order to reduce the amount of time 
consumed by these steps, most modern CPUs 
use a technique known as instruction pipelining 
in which the instructions pass through several 
sub-units in turn. The first sub-unit reads the 
address and decodes it, the next "fetches" the 
values at those addresses, and the next does the 
math itself. With pipelining the "trick" is to 
start decoding the next instruction even before 
the first has left the CPU, in the fashion of an 
assembly line, so the address decoder is 
constantly in use. Any particular instruction 
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takes the same amount of time to complete, a 
time known as the latency, but the CPU can 
process an entire batch of operations much 
faster and more efficiently than if it did so one 
at a time. 
Vector processors take this concept one step 
further. Instead of pipelining just the 
instructions, they also pipeline the data itself. 
The processor is fed instructions that say not 
just to add A to B, but to add all of the numbers 
"from here to here" to all of the numbers "from 
there to there". Instead of constantly having to 
decode instructions and then fetch the data 
needed to complete them, the processor reads a 
single instruction from memory, and it is 
simply implied in the definition of the 
instruction itself that the instruction will 
operate again on another item of data, at an 
address one increment larger than the last. This 
allows for significant savings in decoding time. 
To illustrate what a difference this can make, 
consider the simple task of adding two groups 
of 10 numbers together. In a normal 
programming language one would write a 
"loop" that picked up each of the pairs of 
numbers in turn, and then added them. To the 
CPU, this would look something like this: 
execute this loop 10 times 
  read the next instruction and decode it 
  fetch this number 
  fetch that number 
  add them 
  put the result here 
end loop 
But to a vector processor, this task looks 
considerably different: 
read instruction and decode it 
fetch these 10 numbers 
fetch those 10 numbers 
add them 
put the results here 
There are several savings inherent in this 
approach. For one, only two address 
translations are needed. Depending on the 
architecture, this can represent a significant 
savings by itself. Another saving is fetching 
and decoding the instruction itself, which has to 
be done only one time instead of ten. The code 
itself is also smaller, which can lead to more 
efficient memory use. But more than that, a 
vector processor may have multiple functional 
units adding those numbers in parallel. The 

checking of dependencies between those 
numbers is not required as a vector instruction 
specifies multiple independent operations. This 
simplifies the control logic required, and can 
improve performance by avoiding stalls. As 
mentioned earlier, the Cray implementations 
took this a step further, allowing several 
different types of operations to be carried out at 
the same time. Consider code that adds two 
numbers and then multiplies by a third; in the 
Cray, these would all be fetched at once, and 
both added and multiplied in a single operation. 
Using the pseudocode above, the Cray did: 
read instruction and decode it 
fetch these 10 numbers 
fetch those 10 numbers 
fetch another 10 numbers 
add and multiply them 
put the results here 
The math operations thus completed far faster 
overall, the limiting factor being the time 
required to fetch the data from memory. 
Not all problems can be attacked with this sort 
of solution. Adding these sorts of instructions 
necessarily adds complexity to the core CPU. 
That complexity typically makes other 
instructions run slower—i.e., whenever it is not 
adding up many numbers in a row. The more 
complex instructions also add to the complexity 
of the decoders, which might slow down the 
decoding of the more common instructions 
such as normal adding. In fact, vector 
processors work best only when there are large 
amounts of data to be worked on. For this 
reason, these sorts of CPUs were found 
primarily in supercomputers, as the 
supercomputers themselves were, in general, 
found in places such as weather prediction 
centres and physics labs, where huge amounts 
of data are "crunched"   

     5.Conclution:- 
Vector supercomputers are not viable due to 
cost reason, but vector instruction set 
architecture is still useful. Vector 
supercomputers are adapting commodity 
technology like SMT to improve their price-
performance. Superscalar microprocessor 
designs have begun to absorb some of the 
techniques made popular in earlier vector 
computer systems (Ex - Intel MMX extension). 
Vector processors are useful for embedded and 
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multimedia applications which require low 
power, small code size and high performance. 
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