
Malik N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 120-124

www.johronline.com 120 | P a g e

• -

1. Introduction
Feedforward neural networks (FF networks)
are the most popular and most broadly used

Models in many practical applications. They
are recognized by many different names, such
as "multi-layer perceptrons."
Learning In Feedforward Network
The Feed Forward Network uses
a supervised learning algorithm: not only the
input pattern, but the neural net also needs to
know to what category the pattern belongs. A
collection of neurons connected together in a

For Correspondence:
malik2008@in.com
Received on: October 2013
Accepted after revision: December 2013
Downloaded from: www.johronline.com

Abstract
In this Research paper, learning in feedforward networks will be considered. A feed forward
neural network is an artificial neural network where connections between the units do not form
a directed cycle. This is different from recurrent neural networks. The feedforward neural network
was the first and simplest type of artificial neural network devised. In this network, the information
moves forwardly in only one direction, from the input nodes, through the hidden nodes and to the
output nodes. There are no cycles or loops in the network.

Fig1: Structure of feedforward netural

A feedforward neural network is a actually inspired
classification algorithm. It comprise of a (possibly large)
number of simple neuron-like processing units, organized
in layers. Every unit in a layer is associated with all the
units in the previous layer. These connections are not all
equal, each connection may have a different strength or
weight.

LEARNING IN FEEDFORWARD NEURAL NETWORKS

Naveen Malik, Naeem Akhtar, Hardeep Rohilla, Rahul, Pankaj Sharma

Dronacharya College of Engineering, Khentawas,
Farukhnagar, Gurgaon, India

Journal Of Harmonized Research (JOHR)

Review article

 Journal Of Harmonized Research in Engineering
 1(2), 2013, 120-124

ISSN 2347 – 7393

Malik N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 120-124

www.johronline.com 121 | P a g e

network can be represented by a directed
graph:

 • Nodes represent the neurons, and arrows
represent the links between them.
 • Each node has its number, and a link
connecting two nodes will have a pair of
numbers (e.g. (1, 4) connecting nodes 1 and
4).
 • Networks without cycles (feedback loops)
are called a feed-forward networks (or
perceptron).
Learning proceeds as follows: a pattern is
given at the input layer . The pattern will be
converted in its way through the layers of the
network until it ranges the output layer. The
units in the output layer all fit to a different
category. The outputs of the network as they
are now compared with the outputs as they
preferably would have been if this pattern
were correctly categorized: in the latter case
the unit with the correct category would have
had the largest output value and the output
values of the other output units would have
been very slightly. On the basis of this
assessment all the connection weights are
attuned a little bit to guarantee that, the next
time this same pattern is presented at the
inputs, the value of the output unit that agrees
with the correct category is a little bit greater
than it is now and that, at the same time, the
output values of all the other incorrect outputs
are a little bit lower than they are now. (The
differences between the actual outputs and the
venerated outputs are propagated back from
the top layer to lower layers to be used at
these layers to a mended connection weights.
This is why the term backpropagation
network is also often used to describe this
type of neural network.
Time taking in learning :- This is hard to
answer. It depends on the magnitude of the
neural network, the number of patterns to be

learned, the number of epochs, the
forbearance of the minimizer and Computing
Speed , how much computing time the
learning phase takes.
Various learning methods are:-
1.1. Perceptron Convergence Procedure
Perceptron was introduced by Frank
Rosenblatt in the late 1950's with a learning
algorithm on it. Perceptron may have
uninterrupted valued inputs. It works in the
same way as the formal artificial neuron
distinct before. Its activation is determined
by equation:
 a=wTu + θ
The perceptron is a binary classifier which
maps its input (a real-valued vector) to an

output value (a single binary value):

where is a vector of real-valued
weights, is the dot product (which
here computes a weighted sum), and is
the 'bias', a constant term that does not
depend on any input value.

The Perceptron Convergence Procedure
Step 1. Initialize weights and thresholds.
• set the connection weights wj and the
threshold value θ to small random values.

Step 2. Present new input and desired output.
• present new continuous valued input
x0,x1,….,xn-1 along with the desired output
d(t).

Step 3. Calculate actual output calculated by:

y(t) = fn (Σ J=0

n-1 wj(t) xj(t) – θ)

Step 4. Adapt weights.
• when an error occurs the connection weights
adapted by the neuron by the formula:
Wj(t + 1) = wj(t) + η [d(t) - y{t)] xj(t)
where η is a positive gain fraction that ranges
from 0.0 to 1.0 and controls the
adaption rate.

Step 5. Repeat by going to Step 2- 4 untill
error .

Malik N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 120-124

www.johronline.com 122 | P a g e

1.2 The Least Mean Square Solution
It is a modification to the perceptron
convergence procedure. It reduces the mean
square error between the desired output of a
perceptron-like net and the actual output. The
algorithm is called the Widrow-Hoff or LMS
algorithm. The LMS algorithm is
indistinguishable to the perceptron
convergence procedure except that the hard
limiting nonlinearity is made linear or
replaced by a threshold-logic nonlinearity.
Weights are corrected on every test by an
amount that depends on the difference
between the desired and the actual output. A
classifier could use desired outputs of 1 for
class A and 0 for class B. During operation,
the input would then be assigned to class A
only if the output was above 0.5.

LMS is a fast algorithm that decreases the
MSE. The MSE is the average of the biased
sum of the error for N training sample which
defined as:

where R is the output of the perceptron and Cj
is the current test inputs.
In order to train the perceptron by using LMS,
we can repeat the test set, taking a set of
inputs, calculating the output and then using
the error to regulate the weight. This process
can be done either arbitrarily by the test set,
or for each test of the set in series. The
learning rule of LMS is given as:

The learning rule alters the weight based on
the error (R-C or expected output minus
actual output). Once the error is calculated,
the weights are adjusted by a small amount
, p in the direction of the input, E. This has
the effect of regulating the weights to
diminish the output error.
The implementation of LMS is very simple.
Initially, the weights vector is initialized with
small arbitrary weights. The main repetition

then arbitrarily selects a test, calculates the
output of the neuron, and then calculates the
error. Using the error, the formula of learning
rule is applied to every weight in the vector.

1.3 Gradient Descent Algorithm
Gradient descent is a first-
order optimization algorithm. To find a local
minimum of a function using gradient
descent, one takes steps relational to
the negative of the gradient (or of the
approximate gradient) of the function at the
current point. If instead one takes steps
relational to the positive of the gradient, one
approaches a local maximum of that function;
the process is then known as gradient ascent.
Gradient descent is also known as steepest
descent, or the method of steepest descent.
When recognized as the later, gradient
descent should not be chaotic with the method
of steepest descent for approximating
integrals.
Enhanced approach would be to let the
Adaline Linear Combiner to find the optimum
weights by itself through a quest over the
error surface. Instead of having a decently
arbitrary search, some intelligence is added to
the procedure such that the weight vector is
changed by considering the gradient of e(w)
iteratively [Widrow 60], according
to formula known as delta rule:

w(t+1)=w(t)+∆w(t)

where
 ∆w(t)=-η∇e(w(t))

In the above formula η is a small positive
constant, determining the learning rate.
For the real valued scalar function e (w) on a
vector space w ∈ RN, the gradient ∇e(w)
provides the direction of the steepest upward
slope, so the negative of the gradient is the
direction of the steepest descent . This fact is
demonstrated in Figure1 for a parabolic
error surface on two dimensions.

Malik N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 120-124

www.johronline.com 123 | P a g e

Fig2 : Direction of the steepest gradient descent
on the the paraboliod error on two-dimensional
weight space . only equpotential curves of the
error surface is shown instead of the 3D-error
surface .
Stepest descent algorithm

Step 0. Given x0,set n := 0

Step 1. dn := −∇f(xk). If dn = 0, then stop.

Step 2. Solve minα f(xn + αdn) for the

stepsize αn, perhaps chosen by an exact or
inexact linesearch.

Step 3. Set xn+1 ← xn + αndn,n ← n +1. Go
to Step 1.

Note from Step 2 and the fact that dn =

−∇f(xn) is a descent direction, it follows that

f(xn+1) <f(xn).

1.4 Back propogation Method
Backpropagation, an abbreviation for
"backward propagation of errors", is a
common method of training artificial neural
networks. From a desired output, the network
learns from many inputs, similar to the way a
child learns to identify a dog from examples
of dogs.
It is a supervised learning method, and is a
generalization of the delta rule. For making
up the training set, it requires a dataset of the
desired output for many inputs. It is most
beneficial for feed-forward networks
(networks that have no feedback, or simply,
that have no connections that loop).
Backpropagation requires that the activation
function used by the artificial neurons (or
"nodes") be differentiable.

A Back Propagation network learns by
example. You give the algorithm specimens
of what you want the network to do and it
changes the network’s weights so that, when
training is finished, it will give you the vital
output for a particular input. Back
Propagation networks are perfect for simple
Pattern Recognition and Mapping Tasks.

So, if we put in the first pattern to the
network, we would like the output to be 0 1 as
shown in figure 3.2 (a black pixel is
represented by 1 and a white by 0 as in the
previous examples). The input and its
corresponding target are called a Training
Pair.
Step of BackProgation algorithm
1. First apply the inputs to the network and
work out the output – remember this
original output could be anything, as the
initial weights were arbitrary numbers.

2. Next work out the error for neuron B. The
error is What you want – What you
actually get, in other words:
 ErrorB = OutputB (1-
OutputB)(TargetB– OutputB)
The “Output(1-Output)” term is necessary in
the equation because of the Sigmoid
Function – if we were only using a threshold
neuron it would just be (Target –
Output).

3. Change the weight. Let W+BC be the new
(trained) weight and WAB be the initial
weight.
 W+BC = WBC + (ErrorB x
OutputA)
Notice that it is the output of the connecting
neuron (neuron A) we use (not B). We

Malik N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 120-124

www.johronline.com 124 | P a g e

update all the weights in the output layer in
this way.
4. Calculate the Errors for the hidden layer
neurons. Unlike the output layer we can’t
compute these directly (because we don’t
have a Target), so we Back Propagate
them from the output layer (hence the name
of the algorithm). This is done by
taking the Errors from the output neurons and
running them back through the
weights to get the errors present in the hidden
layer . For example if neuron A is connected
as shown to B and C then we take the errors
from B and C to generate an error for A.
ErrorA = Output A (1 - Output A)(ErrorB
WAB + ErrorC WAC)
Again, the factor “Output (1 - Output)” is
present because of the sigmoid squashing
function.
5. Having obtained the Error for the hidden
layer neurons now proceed as in stage 3
to change the hidden layer weights. By
repeating this method we can train a network
of any number of layers.
2. Applications
Application of Feed Forward neural include:
• Function approximation (modelling)

• Pattern classification (analysis of time-
series, customer databases, etc).
• Object recognition (e.g. character
recognition)
• Data compression
• Security (credit card fraud)
References :-
1. http://www.fon.hum.uva.nl/praat/manual/

Feedforward_neural_networks_1_1__The
_learning_phase.html

2. http://en.wikipedia.org/wiki/Perceptron
3. http://urrg.eng.usm.my/index.php?option=

com_content&view=article&id=165:learn
ing-algorithms-of-neural-network-least-
mean-squarelms-algorithm-
&catid=31:articles&Itemid=70

4. The Steepest Descent Algorithm for
Unconstrained Optimization and a
Bisection Line-search Method Robert M.
Freund February, 2004 Massachusetts
Institute of Technology.

5. www4.rgu.ac.uk/files/chapter3%20-
%20bp.pdf

6. Comparitive Analysis Of Classification
Algorithm In Multiple Categories Of
Bioinformatics D.Chandra Varma
(M.Tech), D.Dharmaiah M.Tech,(Ph.D)
,IJERT

