
Chhillar N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 73-79

www.johronline.com 73 | P a g e

For Correspondence:
nikitachhillarATyahoo.com
Received on: October 2013
Accepted after revision: December 2013
Downloaded from: www.johronline.com

• -

Introduction:
Parsing or syntactic analysis is the process of
analyzing a string of symbols, either in natural
language or in computer languages, according
to the rules of a formal grammar. The term
parsing comes from Latin pars meaning part
(of speech).
The term has slightly different meanings in
different branches of linguistics and computer
science. Traditional sentence parsing is often
performed as a method of understanding the
exact meaning of a sentence, sometimes with

the aid of devices such as sentence diagrams.
Within computational linguistics the term is
used to refer to the formal analysis by
computer of a sentence or other string of
words into its constituents, resulting in a parse
tree showing their syntactic relation to each
other, which may also contain semantic and
other information.
The term is also used in psycholinguistics
when describing language comprehension. In
this context, parsing refers to the way that
human beings analyze a sentence or phrase (in
spoken language or text) "in terms of
grammatical constituents, identifying the parts
of speech, syntactic relations, etc." This term
is especially common when discussing what
linguistic cues help speakers to interpret
garden-path sentences.
Within computer science, the term is used in
the analysis of computer languages, referring

Abstract:
Parsing is the process of structuring a linear representation in accordance with a given grammar.
The “linear representation” may be a sentence, a computer program, knitting pattern, a sequence of
geological strata, a piece of music, actions in ritual behavior, in short any linear sequence in which
the preceding elements in some way restrict† the next element. For some of the examples the
grammar is well-known, for some it is an object of research and for some our notion of a grammar
is only just beginning to take shape.

Keywords: Parsing, Grammar, Bottom-up parsing, Top-down parsing, Parser.

PARSING: PROCESS OF ANALYZING WITH THE RULES OF A FORMAL GRAMMAR

Nikita Chhillar, Nisha Yadav, Neha Jaiswal

Department of Computer Science and Engineering,
Dronacharya College of Engineering, Khentawas,

Farukhnagar, Gurgaon, India

Journal Of Harmonized Research (JOHR)

Original Research Article

 Journal Of Harmonized Research in Engineering
 1(2), 2013, 73-79

ISSN 2347 – 7393

Chhillar N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 73-79

www.johronline.com 74 | P a g e

to the syntactic analysis of the input code into
its component parts in order to facilitate the
writing of compilers and interpreters.
1) Traditional methods:
The traditional grammatical exercise of
parsing, are known as clause analysis,
involves splitting a text into its component
parts of speech with an explanation of the
form, purpose, and syntactic relationship of
each part. This is determined in many part
from study of the language's conjugations and
declensions, which can be quite complex for
heavily inflected languages. To parse a phrase
such as 'Kittu saw monkey' involves noting
that the singular noun 'Kittu' is the subject of
the sentence, the verb 'saw' is the third person
singular of the past tense of the verb 'to see',
and the singular noun 'monkey' is the object of
the sentence. Techniques such as sentence
diagrams are used to indicate relation between
elements in the sentence.
2) Computational methods:
In some machine translation and natural
language processing systems, written texts in
human languages are parsed by computer
programs. Human sentences are not easily
parsed via programs, as there is substantial
ambiguity inside the structure of human
language, whose usage is to convey meaning
(or semantics) in a potentially unlimited range
of possibilities however only some of which
are germane to the particular case. So an
utterance "Kittu saw monkey" versus
"Monkey saw Kittu" is definite on one detail
but in another language might appear as "Kittu
monkey saw" with a reliance on the larger
context to distinguish between those two
possibilities, if indeed that difference was of
concern. It is difficult to prepare formal rules
to describe informal behavior even though it is
clear that some rules are being followed.
To parse natural language data, researchers
should first have same opinion on the
grammar to be used. The selection of syntax is
affected by both linguistic and computational
concerns; for example some parsing systems
make use of lexical functional grammar,
whereas in general, parsing for grammars of

this type is identified as NP-complete. Head-
driven phrase structure grammar is another
linguistic formalism that has been accepted in
the parsing community, but further research
efforts have focused on simple formalisms
such as the one used in the Penn Treebank.
Shallow parsing aims to locate only the
boundaries of major constituents like noun
phrases. Another admired strategy for
avoiding linguistic controversy is dependency
grammar parsing.
Most modern parsers are at least partially
statistical; that is, they rely on a body of
training data which has already been
interpreted (parsed by hand). This approach
permits the system to gather information about
the frequency with which different
constructions occur in specific contexts.
Approaches which have been used consist of
straightforward PCFGs (probabilistic context-
free grammars), maximum entropy, and neural
nets. Most of the successful systems use
lexical statistics (that is, they consider the
identities of the words involved, as well as
their part of speech). However such systems
are vulnerable to over fitting and need some
kind of smoothing to be effective.
Parsing algorithms used for natural language
cannot rely on the grammar having 'good'
properties as with manually designed
grammars for programming languages. As
mentioned before some grammar formalisms
are very difficult to parse computationally; in
general, even if the desired structure is not
context-free, some type of context-free
approximation to the grammar is used to
perform a first pass. Algorithms which make
use context-free grammars often rely on some
alternative of the CKY algorithm, usually with
some heuristic to prune away unlikely
analyses to keep time. However some systems
trade speed for accurateness using, example
linear-time versions of the shift-reduce
algorithm. A recent development has been
parse reranking that the parser proposes
several large numbers of analyses, and a more
complex system picks the best option.

Chhillar N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 73-79

www.johronline.com 75 | P a g e

3) Overview of process:

These examples demonstrate the general case
of parsing a computer language by two levels
of grammar: lexical and syntactic.
The first step is the token generation, or
lexical analysis, in which the input character
stream is split into meaningful symbols
defined with a grammar of regular
expressions. For example, a calculator
program would come across an input such as
"12*(3+4^2" and split this into the tokens 12,
*, (, 3, +, 4,), ^, 2, each of which is a
significant symbol in the context of an
arithmetic expression. The lexer would
contain rules that tell it, the characters *, +, ^,
(and) mark the beginning of a new token, so
meaningless tokens such as "12*" or "(3" will
not be generated).
The next stage is parsing or syntactic analysis,
which examines that the tokens form an
acceptable expression. This is generally done
with reference to a context-free grammar
which recursively defines parts that can make
up an expression and the arrangement in
which they must appear. However, not all
rules defining programming languages can be
conveyed by context-free grammars alone, for
example type validity and proper declaration

of identifiers. These rules can be formally
conveyed with attribute grammars.
The last phase is semantic parsing or analysis
that works out the implications of the
expression just validated and taking the
suitable action. Calculator or interpreter
evaluates the expression or program, a
compiler, would generate some kind of code.
Attribute grammars can also be used to
describe these actions.
Types of parsing:
The task of the parser is basically to determine
how the input can be derived from the start
symbol of the grammar. This can be done in
basically two ways:
• Top-down parsing- Top-down parsing can

be viewed as an approach to find left-most
origin of an input-stream by searching for
parse trees using a top-down extension of
the given formal grammar rules. Tokens
are used from left to right. Complete
choice is used to hold ambiguity by
expanding every alternative right-hand-
side of grammar rules.

• Bottom-up parsing - A parser can initiate
with the input and approach to rewrite it to
the start symbol. Intuitively, the parser
attempts to place the most basic elements,
then the elements include these, and so on.
LR parsers are instances of bottom-up
parsers. Another term used for this sort of
parser is Shift-Reduce parsing.

LL parsers and recursive-descent parser are
examples of top-down parsers that cannot
accommodate left recursive production rules.
Although it has been assumed that simple
implementations of top-down parsing cannot
hold direct and indirect left-recursion and may
need exponential time and space complexity
as parsing ambiguous context-free grammars,
extra sophisticated algorithms for top-down
parsing have been produced by Frost, Hafiz,
and Callaghan that accommodate ambiguity
and left recursion in polynomial time and that
generate polynomial-size depictions of the
potentially exponential number of parse trees.
Their algorithm is capable to produce both
left-most and right-most derivations of an
input with respect to a given CFG (context-
free grammar).

Chhillar N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 73-79

www.johronline.com 76 | P a g e

An important dissimilarity with regard to
parsers is whether a parser produces a leftmost
derivation or a rightmost derivation. LL
parsers will produce a leftmost derivation and
LR parsers will produce a rightmost derivation
(although usually in reverse).
Top-down parsing:
Top-down parsing is a parsing approach

where one begins with the top most level
of the parse tree and works downward by
using the rewriting rules for a formal
grammar. LL parsers are a kind of parser
that makes use of top-down parsing
approach.

• Top-down parsing is a strategy of
studying unknown data relationships by
hypothesizing general parse tree structure
and then considering the known
fundamental structures are well-suited
with the hypothesis. It occurs in the study
of both natural languages and computer
languages.

• Top-down parsing can be viewed as an
shot to find left-most derivations of an
input-stream by searching for parse-trees
using a top-down expansion of the given
formal grammar rules. Tokens are used
from left to right. Inclusive choice is used
to hold ambiguity by expanding all
unconventional right-hand-sides of
grammar rules.

• Simple executions of top-down parsing
do not end for left-recursive grammars,
and top-down parsing by backtracking
may have exponential time complexity
with respect to the length of the input for
ambiguous CFGs. However, more
complicated top-down parsers have been
created by Frost, Hafiz, and Callaghan
which do hold ambiguity and left
recursion within polynomial time and
which generate polynomial-sized
illustrations of the potentially exponential
number of parse trees

Programming language application:
A compiler parses input to assembly language
from a programming language or an internal
representation by harmonizing the incoming
symbols to production rules. Production rules
are defined using Backus-Naur form. An LL
parser is a kind of parser that does top-down

parsing by applying each production rule to
the received symbols, working from the left-
most symbol give way a production rule and
then proceeding to the next production rule for
every non-terminal symbol encountered. In
this way the parsing begins on the Left of the
result side (right side) of the production rule
and calculates non-terminals from the Left
first and, thus, moves down the parse tree for
every new non-terminal before continuing to
the another symbol for a production rule.
For example:

•
•
•

would match and attempt to

match next. Then

would be tried. As one may
suppose, some languages are extra ambiguous
than others. For a non-ambiguous language
that has all productions for non-terminal
produce different strings: the string produced
by one production will not begin with the
similar symbol as the string produced by
another production. A non-ambiguous
language might be parsed by an LL (1)
grammar where the (1) implies the parser
reads ahead one token at a time. For an
ambiguous language to be parsed by an LL
parser, the parser must look ahead more than 1
symbol, e.g. LL (3).
The common way out to this problem is to use
an LR parser, which is a kind of shift-reduce
parser, and does bottom-up parsing.
Accommodating left recursion in top-down
parsing:
A formal grammar which contains left
recursion cannot be parsed by a naive
recursive descent parser if they are not
converted to a weakly equivalent right-
recursive form. However, recent research
reveals that it is possible to hold left-recursive
grammars (along with all other forms of
general CFGs) in a more complicated top-
down parser by use of curtailment. A
detection algorithm which accommodates
ambiguous grammars and curtails an ever-
emergent direct left-recursive parse by
imposing depth limitations with respect to
input length and recent input position, is

Chhillar N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 73-79

www.johronline.com 77 | P a g e

described by Frost and Hafiz in 2006. That
algorithm was extended to a absolute parsing
algorithm to accommodate indirect (by
comparing earlier computed context with
current context) with direct left-recursion in
polynomial time, and to generate compact
polynomial-size demonstrations of the
potentially exponential number of parse trees
for highly ambiguous grammars by Frost,
Hafiz and Callaghan in 2007. The algorithm
has since been executed as a set of parser
combinatory written in the Haskell
programming language.
Time and space complexity of top-down
parsing:
When top-down parser tries to parse an
ambiguous input with respect to an ambiguous
CFG, it may require exponential number of
ladder (with respect to the length of the input)
to try all substitutes of the CFG in order to
create all possible parse trees, which in due
course would require exponential memory
space. The problem of exponential time
complexity in top-down parsers created as sets
of mutually recursive functions has been
explained by Norvig in 1991. His technique is
similar to the use of dynamic programming
and state-sets in Earley's algorithm (1970),
and tables of the CYK algorithm of Cocke,
Younger and Kasami.
The main idea is to store results of applying a
parser p at point j in a memorable and to reuse
result whenever the same situation arises.
Frost, Hafiz and Callaghan also use
memorization for refraining redundant
computations for accommodating any form of
CFG in polynomial time (Θ (n4) for left-
recursive grammars and Θ (n3) for non left-
recursive grammars). Their top-down parsing
algorithm also needs polynomial space for
potentially exponential ambiguous parse trees
by 'compressed representation' and 'local
ambiguities grouping'.
Bottom-up parsing:
Parsing tells the grammatical structure of
linear input text, as a primary step in working
out its meaning. Bottom-up parsing
discovers and processes the text's lowest-level
small elements first, before its mid-level
structures, and leaving the highest-level whole
structure to last.

Bottom-up parsing works in the reverse
direction from top-down parsing. A top-down
parser initiate with the start symbol at the top
of the parse tree and works downward, driving
productions in forward direction until it gets to
the terminal leaves. A bottom-up parse begins
with the string of terminals itself and build
from the leaves upward, working in reverse to
the start symbol by applying the productions.
Then a bottom-up parser searches for
substrings of the working string which
matches the right side of some production.
When it finds such a substring, it substitutes
the left side non-terminal for the matching
right side. The goal is to lessen all the way till
the start symbol and report a successful
parsing. Generally, bottom-up parsing
algorithms are more authoritative than top-
down methods, but not surprisingly, the
construction required is also more complex.
It’s difficult to write a bottom-up parser by
hand for anything but trivial grammar, but
fortunately, there are excellent parser
generator tools like yacc that build a parser
from an input specification, not unlike the way
lex build a scanner to your spec. Shift-reduce
parsing is the commonly used and powerful of
the bottom-up techniques. Bottom-up parsing
takes as input a stream of tokens and develops
the list of productions used for building the
parse tree, but the production is discovered in
reverse order of a top down parser. Like a
table-driven predictive parser, it makes use of
a stack to keep track of the position in the
parse and a parsing table to determine what to
do next.
Bottom-up Versus Top-down:
The bottom-up name originally comes from
the concept of a parse tree, in which the
detailed parts are at the bushy bottom of the
(upside-down) tree, and larger structures
collected from them are in successively higher
layer, until at the top or "root" of the tree a
single unit explains the entire input stream. A
bottom-up parse processes that tree starting
from the bottom left end, and incrementally
work its way upwards and rightwards. A
parser may act on the structure hierarchy's
low, mid, and highest levels without ever
creating an actual data tree; the tree is then
merely implicit in the parser's actions.

Chhillar N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 73-79

www.johronline.com 78 | P a g e

Bottom-up parsing lazily waits until it has
scanned and parsed all parts of some construct

before committing to what the combined
construct is.

The opposite of bottom-up parsing methods
are top-down parsing methods, in which the
input's almost structure is decided (or guessed
at) first, before dealing with mid parts, leaving
the lowest small details to last. In top-down
parse processes the hierarchical tree starting
from the top, and incrementally work
downwards and rightwards. Top-down parsing
keenly decides what a construct is much
earlier, when it has only scanned the leftmost
symbols of that construct and has not yet
parsed any of its parts. Left corner parsing is
a hybrid method which works bottom-up
along the left edge of each subtree, and top-
down on the rest of the parse tree.
If grammar has multiple rules which start with
the same leftmost symbol but have different
endings, then the grammar can be handled by
a deterministic bottom-up parse but cannot be
handled by top-down without guesswork and
backtracking. So bottom-up parsers handle a
larger range of computer language grammar
than do deterministic top-down parsers.
Bottom-up parsing is every now and then done
by backtracking. But generally, bottom-up
parsing is done by a shift-reduce parser such
as a LALR parser.
4) Top-down parsers:
Parsers which use top-down parsing are:

• Recursive descent parser

• LL parser (Left-to-right, Leftmost
derivation)

• Earley parser
5) Bottom-up parsers:
Parsers which use bottom-up parsing are:

• Precedence parser
o Operator-precedence parser
o Simple precedence parser

• BC (bounded context) parsing
• LR parser (Left-to-right, Rightmost

derivation)
o Simple LR (SLR) parser
o LALR parser
o Canonical LR (LR(1)) parser
o GLR parser

• CYK parser
• Recursive ascent parser

Conclusions:
Parsing splits a sequence of characters or
letters into smaller parts. Parsing is also used
for recognizing characters or letters that occur
in a specific order. In addition to providing a
strong, readable, and maintainable approach to
regular expression pattern matching, parsing
enable you to create your own custom
languages for specific purposes.
References:
1. Aho, Alfred V.; Sethi, Ravi; Ullman,

Jeffrey D. (1986). Compilers, principles,
techniques, and tools (Rep. with

Typical parse tree for

A = B + C*2; D = 1

Bottom-up parse steps

Top-down parse steps

Chhillar N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 73-79

www.johronline.com 79 | P a g e

corrections. Ed.). Addison-Wesley Pub.
Co. ISBN 978-0201100884.

2. Aho, Alfred V.; Ullman, Jeffrey D. (1972).
The Theory of Parsing, Translation, and
Compiling (Volume 1: Parsing.) (Repr.
Ed.). Englewood Cliffs, NJ: Prentice-Hall.
ISBN 978-0139145568.

3. Frost, R., Hafiz, R. and Callaghan, P.
(2007) “Modular and Efficient Top-Down
Parsing for Ambiguous Left-Recursive
Grammars." 10th International Workshop
on Parsing Technologies (IWPT), ACL-
SIGPARSE, Pages: 109 - 120, June 2007,
Prague.

4. Frost, R., Hafiz, R. and Callaghan, P.
(2008) “Parser Combinators for
Ambiguous Left-Recursive Grammars."
10th International Symposium on
Practical Aspects of Declarative
Languages (PADL), ACM-SIGPLAN,
Volume 4902/2008, Pages: 167-181,
January 2008, San Francisco.

5. Frost, R. and Hafiz, R. (2006) “A New
Top-Down Parsing Algorithm to
Accommodate Ambiguity and Left
Recursion in Polynomial Time." ACM
SIGPLAN Notices, Volume 41 Issue 5,
Pages: 46 - 54.

6. Norvig, P. (1991) “Techniques for
automatic memoisation with applications
to context-free parsing.” Journal -
Computational Linguistics Volume 17,
Issue 1, Pages: 91 - 98.

7. Tomita, M. (1985) “Efficient Parsing for
Natural Language.” Kluwer, Boston, MA.

8. "Bartleby.com homepage". Retrieved 28
November 2010.

9. "Parse". Dictionary.reference.com.
Retrieved 27 November 2010.

10. "Grammar and Composition".
11. Aho, A.V., Sethi, R. and Ullman, J.D.

(1986) " Compilers: principles, techniques,
and tools." Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA.

12. Frost, R., Hafiz, R. and Callaghan, P.
(2007) “Modular and Efficient Top-Down
Parsing for Ambiguous Left-Recursive
Grammars." 10th International Workshop
on Parsing Technologies (IWPT), ACL-
SIGPARSE, Pages: 109 - 120, June 2007,
Prague.

13. Frost, R., Hafiz, R. and Callaghan, P.
(2008) “Parser Combinators for
Ambiguous Left-Recursive Grammars."
10th International Symposium on
Practical Aspects of Declarative
Languages (PADL), ACM-SIGPLAN,
Volume 4902/2008, Pages: 167 - 181,
January 2008, San Francisco.

14. shproto.org
15. Compilers: Principles, Techniques, and

Tools (2nd Edition), by Alfred Aho,
Monica Lam, Ravi Sethi, and Jeffrey
Ullman, Prentice Hall 2006.

