
Yadav N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 154-160

www.johronline.com 154 | P a g e

• -

1. Introduction
The term security means different things to
different people. Computer

network communities often talk on the subject
of firewalls and intrusion detection systems
when asked if their computer systems are
protected. Folks in management sometimes
will argue that their organization’s systems are
secure because they implement the Secure
Socket Layer (SSL) protocol.
Security is not a feature; it is indeed a system
property. In building secure systems for the

For Correspondence:
jazzynishuATgmail.com
 Received on: November 2013
Accepted after revision: December 2013
Downloaded from: www.johronline.com

Abstract
The Java programming language collectively with its runtime environment is well known to
provide a lot of security features for applications written in Java and headed for the environment, in
which Java applications are deployed. Certainly, under the frequently used slogan "Java Security",
quite unusual aspects regarding the security of Java applications are addressed. Java has been
designed to be an intrinsic safe programming language. In particular Java does not permit to directly
access or control memory. While not being element of the innermost security features, "Java
Security" also encompasses some standard libraries and extensions that are shipped with SUN’s Java
Development Kits (JDKs) and that are predominantly intended for the usage in security critical
tasks. While the Java standard API does only classify appropriate interfaces for most of these
purposes, the JDKs also embrace implementations of cryptographic and security providers.
The runtime environments provided by application-level virtual machines, for instance, the Java
Virtual Machine are attractive for Internet application providers because the applications can be
deployed on any platform that supports the target virtual machine. By means of Internet
applications, organizations in addition to end users face the threat of viruses, trojans, and denial of
service attacks. Virtual machine providers are responsive of these Internet security risks and thus
provide, for example, runtime monitoring of untrusted code and access control to susceptible
resources.

SECURITY IN JAVA

Nisha Yadav, Shikha Yadav, Preeti Dhanda

Department of Computer Science and Engineering,
Dronacharya College of Engineering, Khentawas,

Farukhnagar, Gurgaon, India

Journal Of Harmonized Research (JOHR)

Original Research Article

 Journal Of Harmonized Research in Engineering
 1(2), 2013, 154-160

ISSN 2347 – 7393

Yadav N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 154-160

www.johronline.com 155 | P a g e

Internet, one has to realize that nothing can be
considered 100% secure. Computer
professionals actually need to take the
opposite view: consider all client systems as
fundamentally insecure. As a consequence,
security-minded developers apply preeminent
practices in order to build as robust systems as
feasible. In addition, security must be
integrated into the software development life-
cycle in order to craft reliable software. A
security review at the end of the software
process is not sufficient to produce good
quality programs. Security needs to be
considered in a much wider sense, as a set of
non-functional goals. A thorough treatment of
the matter includes procedures for prevention,
traceability and auditing, monitoring, privacy
and confidentiality, ambiguity, authentication,
and integrity.
Security is the practice by which individuals
and organizations shield their physical and

intellectual property from all forms of attack
and pillage. Although security concerns are
not new, there is revived interest in the entire
area of security in computing systems. This is
because today's information systems have
become the repositories for both personal and
corporate assets and computer networks are
providing new levels of access for users.
Consequently latest opportunities for
unauthorized interaction and possible abuse
may occur. In order to combat potential
security threats, users need programs they can
rely on. Furthermore, developers are looking
for a development platform that has been
intended with built-in security capabilities.
This is where the Java stage comes in. As a
matter of fact, Java is intended from the
ground up for network-based computing, and
security dealings are an integral part of Java's
design.

Java Security Architecture-

� Security can have varying levels of
difficulty for implementation. One factor in
determining the difficulty is the number and
distribution of the systems. When only
individual systems need to be protected,
such as one computer with all files residing
locally and with no need to connect to any
outside resources, security is not as complex
as with distributed systems. With distributed
systems architecture, there are different
nodes and resources. One major issue with
distributed systems is application security.
The Java architecture for distributed systems
computing was designed taking security
requirements into consideration.

Yadav N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 154-160

www.johronline.com 156 | P a g e

Developers need to create programs that are
executed on remote distributed systems. An
architecture needed to be put in place,
however, that would not leave these systems
vulnerable to malicious code. This was
accomplished through the Java architecture.
The source code is written and then converted
to byte code and is stored as a class file, which
is interpreted by the Java Virtual Machine
(JVM) on the client. Class loaders then load

any additional classes that are needed by the
applications. Several security checks are put
between the remote server distributing the
program, and the client executing it, such as
the “sandbox” security model, the byte code
verifier, the applet class loader, the security
manager, and through other security measures
that can be implemented through Java’s
security APIs.

 Java Security Model

In the rest of this section, we will briefly
describe three parts of the Java security
model, which are byte code verifier, class
loader and security manager-
1. Java Bytecode Verifier
Java compiler compiles source programs into
byte codes, and a trustworthy compiler
ensures that Java source code does not
contravene the safety rules. At runtime, a
compiled code section can come from
anywhere on the net, and it is unknown if the
code fragment comes from a trustworthy
compiler or not. So, basically the Java runtime
simply does not trust the incoming code, and
instead subjects it to a series of tests by byte
code verifier.
The byte code verifier looks at the class files
that are to be executed and analyzes them
based on specific checks. The code will be
verified by three or four passes depending on
whether or not any methods are invoked.
Gollmann states that some of the checks
performed are to make certain that the proper
format is used for the class, to prevent stack
overflow, to maintain type integrity, to verify
that the data does not change between types,

and that no illegal references to other classes
are made. Hartel and Moreau further state that
the byte code verifier ensures that jumps do
not lead to illegal instructions, that method
signatures are valid, access control,
initialization of objects, and that “subroutines
used to employ exceptions and synchronized
statements are used in FIFO order”
2. Java Class Loader
The class loader is basically defined in Java
by an abstract class, Class Loader. As an
interface, it can be used to define a policy for
loading Java classes into the runtime
environment. The major functions of the class
loader are :-
· It fetches the applet's code from the remote
machine.
· It creates and enforces a namespace
hierarchy. One of its more important functions
is to ensure that running applet do not replace
system-level components within the runtime
environment. In particular, it prevents applets
from creating their individual class loader.
· It prevents applets from invoking method
that are part of the system's class loader.

Yadav N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 154-160

www.johronline.com 157 | P a g e

As a Java application is executed, further
classes may be called. These classes are not
loaded until they are needed. When they are
called the applet class loader is liable for
loading the specified applets. Classes in Java
are structured by name spaces, and each class
loader is responsible for one name space. The

class loaders are therefore responsible to
protect the integrity of the classes in its name
space (Gollmann, 2001). Java has built-in
classes that reside locally, though, that are
loaded automatically without any security
checks. The path to these classes is indicated
by the CLASSPATH environment variable.

3. Java Security Manager
The Security Manager contains a number of
methods which are anticipated to be called to
check specific types of actions. The Security
Manager class itself is not projected to be
used directly, instead it is intended to be sub
classed and installed as the System Security
Manager. The sub classed Security Manager
can be used to instantiate the preferred
security policy. The Security Manager
provides an enormously flexible and powerful
mechanism for conditionally allowing access
to resources.
The Security Manager methods which ensure
access are passed arguments which are
necessary to implement conditional access
policies, as well as having the ability to check
the execution stack to determine if the code
has been called by local or downloaded code.

Some of the Security Manager’s duties
include:-
· Managing all socket operations.
· Guarding access to protected resources
including files, personal data, etc.
· Controlling the creation of, and all access to,
operating system programs and processes.
· Preventing the installation of new Class
Loaders.
· Maintaining thread integrity.
· Controlling access to Java packages (i.e.,
groups of classes).
When writing applications, developers often
wish to protect variables and methods from
being modified by classes that do not belong
to the group of classes they have written. In
order to create this division, classes are
grouped into packages. When a variable or
method is declared in a class, it can be private
(access only through same class), protected

Yadav N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 154-160

www.johronline.com 158 | P a g e

(access through class or subclass), public (any
class can access), or they may chose not to use
any of the former, in which case only classes
within the same package will have access.
Depending on the package that a class belongs
to, the class will have different access to the
other classes in the package, so security could
be compromised if an unauthorized class
attaches itself to the package. The security
manager makes sure that only classes that
actually belong to the package in question are
able to declare themselves in this package.
The security settings are configured through a
security policy.
Java has provided developers the means to
create their own security manager. To create
it, the developer must create a subclass of the
Security Manager class, and override
whichever methods are necessary to
implement the required security. For example,
the developer may decide to impose a stricter
policy for reading and writing files. This could
be attained through overriding the read and
write methods already defined in the super
class.
Java Security Fundamentals
The following section describes the
underlying security foundation of the Java
platform-
1. The Java language rules
The basic building blocks in the Java security
model are a set of language specific rules.
Their primary purpose is to deny access to or
modification of random locations in the
memory of the hosting machine. The rules
are-
1. Access levels are strictly enforced.
2. Code cannot access arbitrary memory
locations.
3. Entities marked with the final identifier
cannot be changed.
4. Variables may not be used before they have
been initialized.
5. You cannot access data outside your initial
data set. E.g., attempts to access an array
index that does not exist will result in an
ArrayIndexOutOfBounds.
6. Objects cannot be arbitrarily cast into other
objects.

2. Enforcement of the Java language rules
The constructs liable for enforcing these rules
are the compiler, byte-code verifier, and the
Java Virtual Machine (JVM). The first line of
defence is the compiler. During compilation,
every rule is checked; the compiler cannot
enforce checking of array bounds or all cases
of illegal casts. These checks will be
completed at runtime. The problem with
casting arises when two objects are not known
to be unrelated:

Object maybeCar = myVector.elementAt(0);
Car ferrari = (Car) maybeCar;

There is no way for the compiler to know
whether the object returned from the vector is
a car, or just something posing as a car.
When classes are loaded in Java, the byte-
code verifier provides a means to check the
rules on the list above. In addition, the byte-
code verifier also makes sure that:
• The format of the class file is correct.
• Every class has a single superclass.2
• There are no operand stack overflows or
underflows.
The compiler and the byte-code verifier have
overlapping tasks: they perform some of the
same checks. The double-checking is crucial
when dealing with code that has been
compiled by somebody else, whom you
probably don’t trust.
To exercise the byte-code verifier, you run
your program with the -verify alternative from
the command line. In upcoming releases of the
Java platform, the byte-code verifier will most
likely be running by default. But for now,
using the -verify option is highly
recommended when running code compiled
by others.
The JVM is responsible for scrutiny of array
bounds and the validity of object casts.
Non-compliance with the former check results
in a java.lang.ArrayIndexOutOfBounds
Exception. Likewise, illegal object casts end
with the throwing of a
java.lang.ClassCastException at runtime.

Yadav N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 154-160

www.johronline.com 159 | P a g e

The Advantages of Software Protection-
Historically, memory protection and privilege
levels have been implemented in hardware:
memory protection via base / limit registers,
segments, or pages; and privilege levels via
user / kernel mode bits or rings [Schroeder
and Saltzer 1972]. Recent mobile code
systems,
however, rely on software rather than
hardware for protection. The switch to
software
mechanisms is being driven by two needs:
portability and performance.-
1. Portability - The first argument for
software protection is portability. A user level
software product like a browser must coexist
with a variety of operating systems. For
a Web browser to use hardware protection, the
operating system would have to provide

accesses to the page tables and system calls,
but such mechanisms are not available
universally across platforms. Software
protection allows a browser to have platform-
independent security mechanisms.
2. Performance- Second, software
protection offers significantly cheaper cross
domain calls. The magnitude of the
performance difference is estimated first. The
results should not be considered highly
accurate, since they mix measurements from
different architectures. However, the effect
measured is so large that these small
inaccuracies do not affect conclusions. For
example, first, the performance of a null call
between Common Object Model (COM)
objects on a 180 MHz Pentium Pro PC
running Windows NT 4.0 is measured. When
the two objects are in different tasks, the call
takes 230 sec; when the called object is in a

Yadav N. et al., J. Harmoniz. Res. Eng., 2013, 1(2), 154-160

www.johronline.com 160 | P a g e

dynamically linked library in the same task,
the call takes only 0.2 sec — a factor of 1000
difference. While COM is a very different
system from Java, the performance disparity
exhibited in COM would likely also appear if
hardware protection were applied to Java. This
ratio appears to be growing even larger in
newer processors [Ousterhout 1990; Anderson
et al. 1991].
The time difference would be acceptable if
cross-domain calls were very rare. But modern
software structures, especially in mobile code
systems, are leading to tighter binding
between domains.
To illustrate this fact, the Sun Java Virtual
Machine (JVM) (JDK 1.0.2 interpreter
running on a 167 MHz Ultra Sparc) is
instrumented to measure the number of calls
across trust boundaries.
In UNIX, a system-call crosses domains
between user and kernel processes. In Java, a
method call between applet and system classes
also crosses domains because system classes
have additional privileges.
References-
1. Anderson, t. E., levy, h. M., bershad, b. N.,

and lazowska, e. D. 1991. The interaction
of architecture and operating system
design. In Proceedings of the Fourth ACM
Symposium on Architectural Support for
Programming Languages and Operating
Systems.

2. Badger, l., sterne, d. F., sherman, d. L.,
walker, k. M., and haghighat, s. A. 1995.
Practical domain and type enforcement for
UNIX. In Proceedings of the 1995 IEEE
Symposium on Security and Privacy 66–
77.

3. Carlisle Adams and Steve Lloyd,
Understanding PKI—Concepts, Standards,
and Deployment Considerations. Pearson
Education, Inc, second edition 2003.

4. Ross Anderson, “Why Cryptosystems
Fail,” ACM 1st Conf.- Computer and
Comm.Security 1993.

5. Ross Anderson, Alan Blackwell, Alashdair
Grant, and Jeff Yan, “Password
Memorability and Security—Empirical
Results,” IEEE Security and Privacy,
September/October 2004.

6. BankID.no. Retrieved January 21, 2005,
from bankid.no. http://www.bankid.no/
Building Secure Software—Best practices
in software security. Retrieved May
16,2005, from
Cigital.http://www.cigital.com/presentatio
ns/roots/bss05/index_files/frame.html

7. Joseph A. Bank. Java security, PMG
group at MIT LCS, December,
1995,http://swissnet.ai.mit.edu/~jbank/jav
apaper/javapaper.html

8. Rich Levin. Security grows up: the Java 2
platform security model, October
1998,http://www.javasoft.com/features/19
98/11/jdk.security.html

9. Executive Summary. Secure computing
with Java: now and the future, 1998,
http://www.javasoft.com/marketing/collate
ral/security.html

10. Chizmadia, D. (1998). A quick tour of the
CORBA security service. Retrieved
August 27, 2002, from
http://www.itsecurity.com/papers/corbasec
.htm

11. COM+ security programming, part 1:
declarative role-based security. (2001,
JuneRetrieved August 28, 2002, from
http://www.itworld.com/nl/windows_sec/0
6112001/

12. COM+ security programming, part 2:
programmatic role-based security. (2001,
June 18). Retrieved August 28, 2002, from
http://www.itworld.com/nl/windows_sec/0
6182001/

13. Emmerich, W., & Kaveh, N. (2002).
Component technologies: Java Beans,
COM, CORBA, RMI, EJB and the
CORBA component model. Software
Engineering, 691-692.

14. Gollmann, D. (2001). Computer security.
West Sussex, England: John Wiley &
Sons Ltd. Gong, Li. (1997).

